Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix#445 #455

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 60 additions & 7 deletions libpysal/weights/raster.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,6 +128,57 @@ def da2W(
w.index = wsp.index
return w

def get_nodata(da):
"""
Identify nodata value in a `DataArray`

NOTE: follows guidance from https://corteva.github.io/rioxarray/stable/getting_started/nodata_management.html
...

Arguments
---------
da : xarray.DataArray
Input 2D or 3D DataArray with shape=(z, y, x)

Returns
-------
nodata : int/float
Value used for nodata pixels. If no value is available, `None` is
returned
"""
if hasattr(da, 'rio'):
return da.rio.nodata
else:
return nodata_from_attrs(da.attrs)

def nodata_from_attrs(attrs):
"""
Identify nodata value in a `DataArray.attrs`

NOTE: follows guidance from https://corteva.github.io/rioxarray/stable/getting_started/nodata_management.html
...

Arguments
---------
attrs : dict
`DataArray.attrs` dictionary

Returns
-------
nodata : int/float
Value used for nodata pixels. If no value is available, `None` is
returned
"""
candidates = [
'_FillValue', 'missing_value', 'fill_value', 'nodata', 'nodatavals'
]
for i in candidates:
if i in attrs:
if type(i) == tuple:
return attrs[i][0]
else:
return attrs[i]
return None

def da2WSP(
da,
Expand Down Expand Up @@ -226,11 +277,12 @@ def da2WSP(

ser = da.to_series()
dtype = np.int32 if (shape[0] * shape[1]) < 46340 ** 2 else np.int64
if "nodatavals" in da.attrs and da.attrs["nodatavals"]:
mask = (ser != da.attrs["nodatavals"][0]).to_numpy()
nodata = get_nodata(da)
if nodata is not None:
mask = (ser != nodata).to_numpy()
ids = np.where(mask)[0]
id_map = _idmap(ids, mask, dtype)
ser = ser[ser != da.attrs["nodatavals"][0]]
ser = ser[ser != nodata]
else:
ids = np.arange(len(ser), dtype=dtype)
id_map = ids.copy()
Expand All @@ -248,7 +300,7 @@ def da2WSP(
include_nodata = False
# Fallback method to build sparse matrix
sw = lat2SW(*shape, criterion)
if "nodatavals" in da.attrs and da.attrs["nodatavals"]:
if nodata is not None:
sw = sw[mask]
sw = sw[:, mask]

Expand Down Expand Up @@ -540,12 +592,13 @@ def _index2da(data, index, attrs, coords):
dims = idx.names
indexer = tuple(idx.codes)
shape = tuple(lev.size for lev in idx.levels)
nodata = nodata_from_attrs(attrs)

if coords is None:
missing = np.prod(shape) > idx.shape[0]
if missing:
if "nodatavals" in attrs:
fill_value = attrs["nodatavals"][0]
if nodata is not None:
fill_value = nodata
else:
min_data = np.min(data)
fill_value = min_data - 1 if min_data < 0 else -1
Expand All @@ -558,7 +611,7 @@ def _index2da(data, index, attrs, coords):
for dim, lev in zip(dims, idx.levels):
coords[dim] = lev.to_numpy()
else:
fill = attrs["nodatavals"][0] if "nodatavals" in attrs else 0
fill = nodata if nodata is not None else 0
data_complete = np.full(shape, fill, data.dtype)
data_complete[indexer] = data

Expand Down