Skip to content

Commit

Permalink
projective search
Browse files Browse the repository at this point in the history
  • Loading branch information
koide3 committed Sep 23, 2024
1 parent e669301 commit 42d5d15
Showing 1 changed file with 219 additions and 0 deletions.
219 changes: 219 additions & 0 deletions include/small_gicp/ann/projective_search.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,219 @@
// SPDX-FileCopyrightText: Copyright 2024 Kenji Koide
// SPDX-License-Identifier: MIT
#pragma once

#include <cmath>
#include <Eigen/Core>
#include <small_gicp/points/traits.hpp>
#include <small_gicp/ann/knn_result.hpp>

namespace small_gicp {

/// @brief Equirectangular projection.
struct EquirectangularProjection {
public:
/// @brief Project the point into the normalized image coordinates. (u, v) in ([0, 1], [0, 1])
Eigen::Vector2d operator()(const Eigen::Vector3d& pt_3d) const {
if (pt_3d.squaredNorm() < 1e-3) {
return Eigen::Vector2d(0.5, 0.5);
}

const Eigen::Vector3d bearing = pt_3d.normalized();
const double lat = -std::asin(bearing[1]);
const double lon = std::atan2(bearing[0], bearing[2]);

return Eigen::Vector2d(lon / (2.0 * M_PI) + 0.5, lat / M_PI + 0.5);
};
};

/// @brief Border clamp mode. Points out of the border are discarded.
struct BorderClamp {
public:
int operator()(int x, int width) const { return x; }
};

/// @brief Border repeat mode. Points out of the border are wrapped around.
struct BorderRepeat {
public:
int operator()(int x, int width) const { return x < 0 ? x + width : (x >= width ? x - width : x); }
};

/// @brief "Unsafe" projective search. This class does not hold the ownership of the target point cloud.
template <typename PointCloud, typename Projection = EquirectangularProjection, typename BorderModeH = BorderRepeat, typename BorderModeV = BorderClamp>
struct UnsafeProjectiveSearch {
public:
/// @brief Constructor.
/// @param width Index map width
/// @param height Index map height
/// @param points Target point cloud
UnsafeProjectiveSearch(int width, int height, const PointCloud& points) : points(points), index_map(height, width), search_window_h(10), search_window_v(5) {
index_map.setConstant(invalid_index);

Projection project;
for (size_t i = 0; i < traits::size(points); ++i) {
const Eigen::Vector4d pt = traits::point(points, i);
const Eigen::Vector2d uv = project(pt.head<3>());
const int u = uv[0] * index_map.cols();
const int v = uv[1] * index_map.rows();

if (u < 0 || u >= index_map.cols() || v < 0 || v >= index_map.rows()) {
continue;
}
index_map(v, u) = i;
}
}

/// @brief Find the nearest neighbor.
/// @param query Query point
/// @param k_indices Index of the nearest neighbor (uninitialized if not found)
/// @param k_sq_dists Squared distance to the nearest neighbor (uninitialized if not found)
/// @param setting KNN search setting
/// @return Number of found neighbors (0 or 1)
size_t nearest_neighbor_search(const Eigen::Vector4d& query, size_t* k_indices, double* k_sq_dists, const KnnSetting& setting = KnnSetting()) const {
return knn_search<1>(query, k_indices, k_sq_dists, setting);
}

/// @brief Find k-nearest neighbors. This method uses dynamic memory allocation.
/// @param query Query point
/// @param k Number of neighbors
/// @param k_indices Indices of neighbors
/// @param k_sq_dists Squared distances to neighbors (sorted in ascending order)
/// @param setting KNN search setting
/// @return Number of found neighbors
size_t knn_search(const Eigen::Vector4d& query, int k, size_t* k_indices, double* k_sq_dists, const KnnSetting& setting = KnnSetting()) const {
KnnResult<-1> result(k_indices, k_sq_dists, k);
knn_search(query, result, setting);
return result.num_found();
}

/// @brief Find k-nearest neighbors. This method uses fixed and static memory allocation. Might be faster for small k.
/// @param query Query point
/// @param k_indices Indices of neighbors
/// @param k_sq_dists Squared distances to neighbors (sorted in ascending order)
/// @param setting KNN search setting
/// @return Number of found neighbors
template <int N>
size_t knn_search(const Eigen::Vector4d& query, size_t* k_indices, double* k_sq_dists, const KnnSetting& setting = KnnSetting()) const {
KnnResult<N> result(k_indices, k_sq_dists);
knn_search(query, result, setting);
return result.num_found();
}

private:
template <typename Result>
void knn_search(const Eigen::Vector4d& query, Result& result, const KnnSetting& setting) const {
BorderModeH border_h;
BorderModeV border_v;

Projection project;
const Eigen::Vector2d uv = project(query.head<3>());
const int u = uv[0] * index_map.cols();
const int v = uv[1] * index_map.rows();

for (int dv = -search_window_v; dv <= search_window_v; dv++) {
const int v_clamped = border_v(v + dv, index_map.rows());
if (v_clamped < 0 || v_clamped >= index_map.rows()) {
continue;
}

for (int du = -search_window_h; du <= search_window_h; du++) {
const int u_clamped = border_h(u + du, index_map.cols());
if (u_clamped < 0 || u_clamped >= index_map.cols()) {
continue;
}

const auto index = index_map(v_clamped, u_clamped);
if (index == invalid_index) {
continue;
}

const double sq_dist = (traits::point(points, index) - query).squaredNorm();
result.push(index, sq_dist);

if (setting.fulfilled(result)) {
return;
}
}
}
}

public:
static constexpr std::uint32_t invalid_index = std::numeric_limits<std::uint32_t>::max();

const PointCloud& points;
Eigen::Matrix<std::uint32_t, -1, -1> index_map;

int search_window_h;
int search_window_v;
};

/// @brief "Safe" projective search. This class holds the ownership of the target point cloud.
template <typename PointCloud, typename Projection = EquirectangularProjection, typename BorderModeH = BorderRepeat, typename BorderModeV = BorderClamp>
struct ProjectiveSearch {
public:
using Ptr = std::shared_ptr<ProjectiveSearch<PointCloud, Projection>>;
using ConstPtr = std::shared_ptr<const ProjectiveSearch<PointCloud, Projection>>;

explicit ProjectiveSearch(int width, int height, std::shared_ptr<const PointCloud> points) : points(points), search(width, height, *points) {}

/// @brief Find k-nearest neighbors. This method uses dynamic memory allocation.
/// @param query Query point
/// @param k Number of neighbors
/// @param k_indices Indices of neighbors
/// @param k_sq_dists Squared distances to neighbors (sorted in ascending order)
/// @param setting KNN search setting
/// @return Number of found neighbors
size_t nearest_neighbor_search(const Eigen::Vector4d& query, size_t* k_indices, double* k_sq_dists, const KnnSetting& setting = KnnSetting()) const {
return search.nearest_neighbor_search(query, k_indices, k_sq_dists, setting);
}

/// @brief Find k-nearest neighbors. This method uses dynamic memory allocation.
/// @param query Query point
/// @param k Number of neighbors
/// @param k_indices Indices of neighbors
/// @param k_sq_dists Squared distances to neighbors (sorted in ascending order)
/// @param setting KNN search setting
/// @return Number of found neighbors
size_t knn_search(const Eigen::Vector4d& query, size_t k, size_t* k_indices, double* k_sq_dists, const KnnSetting& setting = KnnSetting()) const {
return search.knn_search(query, k, k_indices, k_sq_dists, setting);
}

public:
const std::shared_ptr<const PointCloud> points; ///< Points
const UnsafeProjectiveSearch<PointCloud, Projection, BorderModeH, BorderModeV> search; ///< Search
};

namespace traits {

template <typename PointCloud, typename Projection, typename BorderModeH, typename BorderModeV>
struct Traits<UnsafeProjectiveSearch<PointCloud, Projection, BorderModeH, BorderModeV>> {
static size_t nearest_neighbor_search(
const UnsafeProjectiveSearch<PointCloud, Projection, BorderModeH, BorderModeV>& tree,
const Eigen::Vector4d& point,
size_t* k_indices,
double* k_sq_dists) {
return tree.nearest_neighbor_search(point, k_indices, k_sq_dists);
}

static size_t
knn_search(const UnsafeProjectiveSearch<PointCloud, Projection, BorderModeH, BorderModeV>& tree, const Eigen::Vector4d& point, size_t k, size_t* k_indices, double* k_sq_dists) {
return tree.knn_search(point, k, k_indices, k_sq_dists);
}
};

template <typename PointCloud, typename Projection, typename BorderModeH, typename BorderModeV>
struct Traits<ProjectiveSearch<PointCloud, Projection, BorderModeH, BorderModeV>> {
static size_t
nearest_neighbor_search(const ProjectiveSearch<PointCloud, Projection, BorderModeH, BorderModeV>& tree, const Eigen::Vector4d& point, size_t* k_indices, double* k_sq_dists) {
return tree.nearest_neighbor_search(point, k_indices, k_sq_dists);
}

static size_t
knn_search(const ProjectiveSearch<PointCloud, Projection, BorderModeH, BorderModeV>& tree, const Eigen::Vector4d& point, size_t k, size_t* k_indices, double* k_sq_dists) {
return tree.knn_search(point, k, k_indices, k_sq_dists);
}
};

} // namespace traits

} // namespace small_gicp

0 comments on commit 42d5d15

Please sign in to comment.