I'm playing with PyTorch on the CIFAR10 dataset.
I manually change the lr
during training:
0.1
for epoch[0,150)
0.01
for epoch[150,250)
0.001
for epoch[250,350)
Resume the training with python main.py --resume --lr=0.01
Model | cifar10 | cifar100 |
---|---|---|
VGG16 | 92.64 | |
ResNet18 | 93.02 | 76.51 |
ResNet50 | 93.62 | |
ResNet101 | 93.75 | |
MobileNetV2 | 94.43 | |
ResNeXt29(32x4d) | 94.73 | |
ResNeXt29(2x64d) | 94.82 | |
DenseNet121 | 95.04 | |
PreActResNet18 | 95.11 | |
DPN92 | 95.16 |
Model | ImageNet Top1 | ImageNet Top5 | Tiny ImageNet Top1 | Tiny ImageNet Top5 |
---|---|---|---|---|
VGG16 | ||||
ResNet18 | 64.33 | 85.73 | 47.23(64)/60.72(224) | 71.84(64)/82.25(224) |
ResNet50 | ||||
ResNet101 | ||||
MobileNetV2 | ||||
ResNeXt29(32x4d) | ||||
ResNeXt29(2x64d) | ||||
DenseNet121 | ||||
PreActResNet18 | ||||
DPN92 |