Skip to content

alisure-ml/pytorch-cifar

 
 

Repository files navigation

Train CIFAR10 with PyTorch

I'm playing with PyTorch on the CIFAR10 dataset.

Learning rate adjustment

I manually change the lr during training:

  • 0.1 for epoch [0,150)
  • 0.01 for epoch [150,250)
  • 0.001 for epoch [250,350)

Resume the training with python main.py --resume --lr=0.01

cifar Accuracy

Model cifar10 cifar100
VGG16 92.64
ResNet18 93.02 76.51
ResNet50 93.62
ResNet101 93.75
MobileNetV2 94.43
ResNeXt29(32x4d) 94.73
ResNeXt29(2x64d) 94.82
DenseNet121 95.04
PreActResNet18 95.11
DPN92 95.16

ImageNet Accuracy

Model ImageNet Top1 ImageNet Top5 Tiny ImageNet Top1 Tiny ImageNet Top5
VGG16
ResNet18 64.33 85.73 47.23(64)/60.72(224) 71.84(64)/82.25(224)
ResNet50
ResNet101
MobileNetV2
ResNeXt29(32x4d)
ResNeXt29(2x64d)
DenseNet121
PreActResNet18
DPN92

About

95.16% on CIFAR10 with PyTorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%