forked from kuangliu/pytorch-cifar
-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_100.py
186 lines (153 loc) · 6.44 KB
/
main_100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import torchvision
from models import *
import torch.nn as nn
import torch.optim as optim
from alisuretool.Tools import Tools
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
class Runner(object):
def __init__(self, root_path='/home/ubuntu/data1.5TB/cifar', num_classes=100,
model=VGG, batch_size=128, lr=0.1, name="vgg"):
"""
# net = VGG()
# net = ResNet18()
# net = PreActResNet18()
# net = GoogLeNet()
# net = DenseNet121()
# net = ResNeXt29_2x64d()
# net = MobileNet()
# net = MobileNetV2()
# net = DPN92()
# net = ShuffleNetG2()
# net = SENet18()
# net = ShuffleNetV2()
"""
self.root_path = root_path
self.num_classes = num_classes
self.model = model
self.batch_size = batch_size
self.lr = lr
self.name = name
self.checkpoint_path = "./checkpoint/{}".format(self.name)
self.classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.best_acc = 0
self.start_epoch = 0
self.net = self._build(self.model)
self.criterion = nn.CrossEntropyLoss()
self.optimizer = optim.SGD(self.net.parameters(), lr=self.lr, momentum=0.9, weight_decay=5e-4)
self.train_loader, self.test_loader = self._data()
pass
def _data(self):
Tools.print('==> Preparing data..')
transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(), transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
transform_test = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
train_set = torchvision.datasets.CIFAR100(self.root_path, train=True, download=True, transform=transform_train)
_train_loader = torch.utils.data.DataLoader(train_set, batch_size=self.batch_size, shuffle=True, num_workers=2)
test_set = torchvision.datasets.CIFAR100(self.root_path, train=False, download=True, transform=transform_test)
_test_loader = torch.utils.data.DataLoader(test_set, batch_size=100, shuffle=False, num_workers=2)
return _train_loader, _test_loader
def _build(self, model):
Tools.print('==> Building model..')
net = model(self.num_classes)
net = net.to(self.device)
if self.device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
pass
return net
def _change_lr(self, epoch):
def __change_lr(_lr):
for param_group in self.optimizer.param_groups:
param_group['lr'] = _lr
pass
if 0 <= epoch < 100:
__change_lr(self.lr)
elif 100 <= epoch < 200:
__change_lr(self.lr / 10)
elif 200 <= epoch:
__change_lr(self.lr / 100)
pass
def info(self):
Tools.print("model={} batch size={} lr={} name={}".format(str(self.model), self.batch_size, self.lr, self.name))
pass
def resume(self, is_resume):
if is_resume and os.path.isdir(self.checkpoint_path):
Tools.print('==> Resuming from checkpoint..')
checkpoint = torch.load('{}/ckpt.t7'.format(self.checkpoint_path))
self.net.load_state_dict(checkpoint['net'])
self.best_acc = checkpoint['acc']
self.start_epoch = checkpoint['epoch']
pass
def train(self, epoch, change_lr=False):
print()
Tools.print('Epoch: %d' % epoch)
if change_lr:
self._change_lr(epoch)
self.net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(self.train_loader):
inputs, targets = inputs.to(self.device), targets.to(self.device)
self.optimizer.zero_grad()
outputs = self.net(inputs)
loss = self.criterion(outputs, targets)
loss.backward()
self.optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
pass
Tools.print('Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss / len(self.train_loader), 100. * correct / total, correct, total))
pass
def test(self, epoch):
self.net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(self.test_loader):
inputs, targets = inputs.to(self.device), targets.to(self.device)
outputs = self.net(inputs)
loss = self.criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
pass
pass
Tools.print('Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss / len(self.test_loader), 100. * correct / total, correct, total))
# Save checkpoint.
acc = 100. * correct / total
if acc > self.best_acc:
Tools.print('Saving..')
state = {'net': self.net.state_dict(), 'acc': acc, 'epoch': epoch}
if not os.path.isdir(self.checkpoint_path):
os.mkdir(self.checkpoint_path)
torch.save(state, '{}/ckpt.t7'.format(self.checkpoint_path))
self.best_acc = acc
pass
Tools.print("best_acc={} acc={}".format(self.best_acc, acc))
pass
pass
if __name__ == '__main__':
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # 1
_root_path = "/home/ubuntu/ALISURE/data/cifar"
_num_classes = 100
runner = Runner(root_path=_root_path, num_classes=_num_classes, model=ResNet101,
batch_size=128, lr=0.01, name="ResNet101")
runner.info()
runner.resume(is_resume=True)
for _epoch in range(runner.start_epoch, 300):
runner.train(_epoch, change_lr=True)
runner.test(_epoch)
pass
pass