Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(dataloader): refine implementation of mocked and megatron dataloader #344

Open
wants to merge 8 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 25 additions & 11 deletions internlm/data/build_dataloader.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,12 +2,13 @@
import subprocess
from functools import partial

import torch
import torch.distributed as dist
from torch.utils.data import ConcatDataset, DataLoader

from internlm.accelerator.abstract_accelerator import get_accelerator
from internlm.core.context import ParallelMode
from internlm.core.context import global_context as gpc
from internlm.data.megatron.batch_sampler import MegatronBatchSampler
from internlm.data.megatron.collaters import megatron_collate_fn
from internlm.data.megatron.dataset import build_megatron_dataset
from internlm.data.mocked.batch_sampler import MockedSequentialBatchSampler
Expand Down Expand Up @@ -41,8 +42,8 @@
from internlm.utils.logger import get_logger
from internlm.utils.utils import DataType

# global llm logger
logger = get_logger(__file__)
internlm_accelerator = get_accelerator()


def get_tokenized_train_loader_items(data_cfg):
Expand Down Expand Up @@ -156,10 +157,14 @@ def get_streaming_train_loader_items(data_cfg):


def get_megatron_train_loader_items(data_cfg):
assert data_cfg.get(
"pack_sample_into_one", False
), "megatron dataloader curently only supports pack_sample_into_one=True"
try:
from internlm.data.megatron import helpers # noqa # pylint: disable=W0611
except ImportError:
if gpc.is_rank_for_log():
# Compile dynamic library on-demand
if gpc.get_global_rank() % internlm_accelerator.device_count() == 0:
subprocess.run( # noqa # pylint: disable=W1510
[
"g++",
Expand All @@ -173,23 +178,28 @@ def get_megatron_train_loader_items(data_cfg):
"internlm/data/megatron/helpers.cpp",
"-o",
"internlm/data/megatron/helpers.so",
]
],
)
torch.distributed.barrier()

# NOTICE: Currently we only support single megatron dataset, a.k.a., single .bin and .idx
# Megatron dataset (.bin and.idx) should be generated by Megatron-LM tools/preprocess_data.py
# https://github.com/NVIDIA/Megatron-LM/blob/main/tools/preprocess_data.py
train_ds = build_megatron_dataset(
data_prefix=data_cfg.train_folder,
data_impl=data_cfg.get("data_impl", "infer"),
splits_string="1.0, 0.0, 0.0",
train_valid_test_num_samples=[9600000, 0, 0],
seq_len=data_cfg.seq_len,
seed=data_cfg.get("seed", 1024),
skip_warmup=True,
)

train_sampler = MegatronBatchSampler(
total_samples=len(train_ds),
consumed_samples=0,
train_sampler = StaticBatchSampler(
train_ds.datasets if isinstance(train_ds, ConcatDataset) else [train_ds],
batch_size=data_cfg.micro_num * data_cfg.micro_bsz,
rampup_batch_size=data_cfg.rampup_batch_size,
micro_bsz=data_cfg.micro_bsz,
seed=data_cfg.get("seed", 1024),
drop_last=True,
data_rank=gpc.get_local_rank(ParallelMode.DATA),
data_world_size=gpc.get_world_size(ParallelMode.DATA),
)

train_collate_fn = partial(
Expand All @@ -203,14 +213,18 @@ def get_mock_train_loader_items(data_cfg):
assert data_cfg.get(
"pack_sample_into_one", False
), "mocked dataloader curently only supports pack_sample_into_one=True"

train_ds = MockedDataset(
train_folder=data_cfg.train_folder,
micro_bsz=data_cfg.micro_bsz,
micro_num=data_cfg.micro_num,
seq_len=data_cfg.seq_len,
)

train_sampler = MockedSequentialBatchSampler(train_ds, data_cfg.micro_num)

train_collate_fn = partial(packed_collate_fn, packed_length=data_cfg.seq_len * data_cfg.micro_bsz)

return train_ds, train_sampler, train_collate_fn


Expand Down
2 changes: 0 additions & 2 deletions internlm/data/megatron/__init__.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,7 @@
from .batch_sampler import MegatronBatchSampler
from .collaters import megatron_collate_fn
from .dataset import build_megatron_dataset

__all__ = [
"MegatronBatchSampler",
"build_megatron_dataset",
"megatron_collate_fn",
]
62 changes: 0 additions & 62 deletions internlm/data/megatron/batch_sampler.py

This file was deleted.

56 changes: 22 additions & 34 deletions internlm/data/megatron/collaters.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,48 +2,36 @@


def megatron_collate_fn(batch, micro_num, micro_bsz, seq_len):

input_ids_result = [[] for _ in range(micro_num)]
labels_result = [[] for _ in range(micro_num)]
cu_seqlens = []
input_ids_list = [[] for _ in range(micro_num)]
labels_list = [[] for _ in range(micro_num)]
cu_seqlens_list = []
indexes = []
indexes_list = []

for i, item in enumerate(batch):
assert i < micro_num * micro_bsz
seq_len_list = item["text"]
assert len(seq_len_list) == seq_len + 1

micro_bsz_index = i % micro_bsz
micro_num_index = i // micro_bsz

input_ids_result[micro_num_index].append(seq_len_list[:-1])
labels_result[micro_num_index].append(seq_len_list[1:])

cu_seqlens.append(seq_len * micro_bsz_index)
indexes = indexes + list(range(seq_len))
assert len(batch) == micro_bsz * micro_num
for idx, b in enumerate(batch):
tokens = b["text"]
# The length of megatron preprocessed data samples is (seq_len + 1)
# So we use the first seq_len tokens as input and the last seq_len tokens as shifted labels
assert len(tokens) == seq_len + 1
micro_bsz_index = idx % micro_bsz
micro_num_index = idx // micro_bsz
input_ids_list[micro_num_index].append(tokens[:-1])
labels_list[micro_num_index].append(tokens[1:])

if micro_bsz_index == micro_bsz - 1:
input_ids_result[micro_num_index] = torch.cat(
[torch.from_numpy(arr).long() for arr in input_ids_result[micro_num_index]], dim=0
# Since megatron data sample is numpy format, we need to convert it to tensor and concate within micro batch
input_ids_list[micro_num_index] = torch.cat(
[torch.from_numpy(arr) for arr in input_ids_list[micro_num_index]], dim=0
)
labels_result[micro_num_index] = torch.cat(
[torch.from_numpy(arr).long() for arr in labels_result[micro_num_index]], dim=0
labels_list[micro_num_index] = torch.cat(
[torch.from_numpy(arr) for arr in labels_list[micro_num_index]], dim=0
)
cu_seqlens.append(seq_len * micro_bsz)
cu_seqlens_list.append(torch.IntTensor(cu_seqlens))
cu_seqlens = []
indexes_list.append(torch.IntTensor(indexes))
indexes = []

input_ids = torch.stack(input_ids_result)
labels = torch.stack(labels_result)
indexes = torch.stack(indexes_list)
cu_seqlens_list.append(torch.IntTensor([i * seq_len for i in range(micro_bsz + 1)]))
indexes_list.append(torch.IntTensor(list(range(seq_len)) * micro_bsz))

return {
"input_ids": input_ids,
"input_ids": torch.stack(input_ids_list),
"cu_seqlens": cu_seqlens_list,
"indexes": indexes,
"indexes": torch.stack(indexes_list),
"type_ids": torch.zeros(micro_num, micro_bsz * seq_len, dtype=torch.int64),
}, labels
}, torch.stack(labels_list)
90 changes: 17 additions & 73 deletions internlm/data/megatron/dataset.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
# adapted from https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/datasets/gpt_dataset.py
# adapted from https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/datasets/indexed_dataset.py

import hashlib
import os
import struct
Expand Down Expand Up @@ -764,82 +765,25 @@ def get_indexed_dataset_(data_prefix, data_impl, skip_warmup):
return indexed_dataset


def get_train_valid_test_split_(splits_string, size):
"""Get dataset splits from comma or '/' separated string list."""

splits = []
if splits_string.find(",") != -1:
splits = [float(s) for s in splits_string.split(",")]
elif splits_string.find("/") != -1:
splits = [float(s) for s in splits_string.split("/")]
else:
splits = [float(splits_string)]
while len(splits) < 3:
splits.append(0.0)
splits = splits[:3]
splits_sum = sum(splits)
assert splits_sum > 0.0
splits = [split / splits_sum for split in splits]
splits_index = [0]
for index, split in enumerate(splits):
splits_index.append(splits_index[index] + int(round(split * float(size))))
diff = splits_index[-1] - size
for index in range(1, len(splits_index)):
splits_index[index] -= diff
assert len(splits_index) == 4
assert splits_index[-1] == size
return splits_index


def build_megatron_dataset(
data_prefix,
data_impl,
splits_string,
train_valid_test_num_samples,
seq_len,
seed,
skip_warmup,
return_doc_ids=False,
*,
data_cache_path=None,
):

# Indexed dataset.
indexed_dataset = get_indexed_dataset_(data_prefix, data_impl, skip_warmup)

total_num_of_documents = indexed_dataset.sizes.shape[0]
splits = get_train_valid_test_split_(splits_string, total_num_of_documents)

# Print stats about the splits.
print_rank_0(" > dataset split:")

def print_split_stats(index, name):
print_rank_0(" {}:".format(name))
print_rank_0(
" document indices in [{}, {}) total of {} "
"documents".format(splits[index], splits[index + 1], splits[index + 1] - splits[index])
)

print_split_stats(0, "train")

def build_dataset(index, name):
dataset = None
if splits[index + 1] > splits[index]:
documents = np.arange(start=splits[index], stop=splits[index + 1], step=1, dtype=np.int32)
dataset = GPTDataset(
name,
data_prefix,
documents,
indexed_dataset,
splits_string,
train_valid_test_num_samples[index],
seq_len,
seed,
return_doc_ids,
data_cache_path=data_cache_path,
)
return dataset

train_dataset = build_dataset(0, "train")

return train_dataset
indexed_dataset = get_indexed_dataset_(data_prefix, data_impl="infer", skip_warmup=True)

# GPT dataset.
return GPTDataset(
name="train",
data_prefix=data_prefix,
documents=np.arange(start=0, stop=indexed_dataset.sizes.shape[0], step=1, dtype=np.int32),
indexed_dataset=indexed_dataset,
splits_string="1.0, 0.0, 0.0", # proportion of dataset for train/valid/test, we set 1.0 for train only
num_samples=gpc.config.data.micro_bsz
* gpc.config.data.micro_num
* gpc.get_world_size(ParallelMode.DATA)
* gpc.config.data.total_steps, # total number of train samples
seq_length=seq_len,
seed=seed,
)
Loading
Loading