Skip to content

tancnle/docker-darknet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLO Object Detection with Darknet

Docker Automated build Docker Cloud Build Status

A convenient way to do object detection using YOLOv3/YOLOv4 model via Docker.

Usage

Run object detection on an image

# YOLO v3
docker run --volume ${PWD}/output:/output \
           --interactive --rm tancnle/darknet-yolo:3 < interesting.png

# YOLO v4
docker run --volume ${PWD}/output:/output \
           --interactive --rm tancnle/darknet-yolo:4 < interesting.png

View the image with polygon-bounding boxes

open output/prediction.png

Example Output

Original YOLO v3 YOLO v4
original YOLO v3 YOLO v4
# YOLO v3
Loading weights from yolov3.weights...Done!
/tmp/image: Predicted in 19.697341 seconds.
pottedplant: 98%
bicycle: 89%
bicycle: 73%

# YOLO v4
Loading weights from yolov4.weights...mini_batch = 1, batch = 8, time_steps = 1, train = 0
nms_kind: greedynms (1), beta = 0.600000
nms_kind: greedynms (1), beta = 0.600000
nms_kind: greedynms (1), beta = 0.600000
Done! Loaded 162 layers from weights-file
Not compiled with OpenCV, saving to predictions.png instead

 seen 64, trained: 32032 K-images (500 Kilo-batches_64)
/tmp/image: Predicted in 22087.479000 milli-seconds.
pottedplant: 98%
bicycle: 38%
bicycle: 47%
bicycle: 53%
person: 55%
person: 67%

References

About

YOLO Image Dectection with Darknet

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published