Svix makes it easy for developers to send webhooks. Developers make one API call, and Svix takes care of deliverability, retries, security, and more. For more information, please refer to the Svix homepage.
You can find general usage documentation at https://docs.svix.com. For complete API documentation with code examples for each endpoint in all of our official client libraries head over to our API documentation site at https://api.svix.com.
- GitHub Issues - report issues and make suggestions.
- Community Forum - ask questions, and start discussions!
- Slack - come and chat with us!
To stay up-to-date with new features and improvements be sure to watch our repo!
β‘οΈ Feature Breakdown β‘οΈ | |||||||
---|---|---|---|---|---|---|---|
Language | Officially Supported | API Support | Webhook Verification | Other Notes | |||
Go | β | β | β | ||||
Python | β | β | β | ||||
Typescript/Javascript | β | β | β | ||||
Java | β | β | β | Async support planned. (If you use kotlin, checkout our kotlin library for coroutine support.) | |||
Kotlin | β | β | β | ||||
Ruby | β | β | β | ||||
C# (dotnet) | β | β | β | ||||
Rust | β | β | β | ||||
PHP | β | π | β |
There are multiple ways to get the Svix server up running. Docker is probably the most common one, but you can choose the one that works best for you.
The Svix server is written in Rust π¦, which means you can compile it into a static library for a variety of targets. Please refer to the building from source section below for more information.
Please refer to the server configuration section below for more information regarding the available settings.
You can use the official Svix Docker image from Docker Hub.
You can either use the example docker-compose.yml file with docker-compose
(easiest), docker swarm
(advanced), or run the container standalone.
This alternative is the easiest because it will also boot up and configure redis
and postgresql
.
This assumes you have docker-compose installed.
cd server
docker-compose up
Running a standalone container is slightly more advanced, as it requires you to set some environment variables and have them pointing to your redis
and postgres
instances.
You can pass individual environment variables to docker using the -e
flag, or just create a file like development.env and use the --env-file
flag like in the example below:
docker run \
--name svix-server \
-p 8071:8071 \
--env-file development.env \
svix/svix-server
Pre-compiled binaries are available for released versions in the releases section.
The Svix server is written in Rust π¦ and requires a Rust build environment.
If you already have one, you just need to run cargo build
, otherwise, please please refer to the Svix server README for more information about building the server from source.
The server requires the following runtime dependencies to work correctly:
- A PostgreSQL server - for the storage of events.
- An optional Redis server version 6.2.0 or higher - for the task queue and cache. Please note that it's recommended to enable persistence in Redis so that tasks are persisted across Redis server restarts and upgrades.
There are three ways to configure svix-server
: environment vars, .env
file, and a configuration file.
You can put a file called config.toml
in the current working directory of svix-server
and it will automatically pick it up.
You can take a look at the example file for more information and a full list of supported settings: config.toml.
Here's a quick example of the most important configurations:
# The JWT secret for authentication - should be secret and securely generated
jwt_secret = "8KjzRXrKkd9YFcNyqLSIY8JwiaCeRc6WK4UkMnSW"
# The DSN for the database. Only postgres is currently supported.
db_dsn = "postgresql://postgres:postgres@pgbouncer/postgres"
# The DSN for redis (can be left empty if not using redis)
redis_dsn = "redis://redis:6379"
# What kind of message queue to use.
queue_type = "redis"
Alternatively, you can configure svix-server
by setting the equivalent environment variables for each of the supported settings. The environment variables can either be passed directly or by setting them in a .env
file.
The environment variables have the name name as the config names, but they are all upper case and are prefixed with SVIX_
.
For example, the above example configuration would look like this if it was passed in the env:
# The JWT secret for authentication - should be secret and securely generated
SVIX_JWT_SECRET = "8KjzRXrKkd9YFcNyqLSIY8JwiaCeRc6WK4UkMnSW"
# The DSN for the database. Only postgres is currently supported.
SVIX_DB_DSN = "postgresql://postgres:postgres@pgbouncer/postgres"
# The DSN for redis (can be left empty if not using redis)
SVIX_REDIS_DSN = "redis://redis:6379"
# What kind of message queue to use.
SVIX_QUEUE_TYPE = "redis"
Use valid JWTs generated with the correct secret as Bearer
.
E.g:
Authorization: Bearer <JWT_TOKEN_HERE>
Either generate one using
cargo run jwt generate
Or if you are generating your own, make sure to use org_23rb8YdGqMT0qIzpgGwdXfHirMu
as the sub
field.
One of our main goals with open sourcing the Svix dispatcher is ease of use. The hosted Svix service, however, is quite complex due to our scale and the infrastructure it requires. This complexity is not useful for the vast majority of people and would make this project much harder to use and much more limited. This is why this code has been adjusted before being released, and some of the features, optimizations, and behaviors supported by the hosted dispatcher are not yet available in this repo. With that being said, other than some known incompatibilities, the internal Svix test suite passes. This makes them are already mostly compatible, and we are working hard on bringing them to full feature parity.
Checkout our project specific development guides to get started hacking on Svix!
Contributions are what makes the open source world go round! All contributions are very much welcomed and are greatly appreciated.
Please refer to the contribution guide for information on how to contribute.
A quick how to for contribution:
- Fork the project
- Create your feature branch (
git checkout -b feature/some-feature
) - Make your changes
- Commit your changes (
git commit -m 'Implement an amazing feature.'
) - Push to the branch (
git push origin feature/some-feature
) - Open a pull request
Distributed under the MIT License. See LICENSE for more information.