This project implements the multi-learning based on Modular Graph Transformer Networks (MGTN).
Official GitHub: https://github.com/ReML-AI/MGTN
Please, install the following packages
- numpy
- pytorch (1.*)
- torchnet
- torchvision
- tqdm
- networkx
checkpoint/coco/mgtn_final_86.9762.pth.tar (Dropbox) or (BaiDu),(password:kknm)
Method | mAP | CP | CR | CF1 | OP | OR | OF1 |
---|---|---|---|---|---|---|---|
CNN-RNN | 61.2 | - | - | - | - | - | - |
SRN | 77.1 | 81.6 | 65.4 | 71.2 | 82.7 | 69.9 | 75.8 |
Baseline(ResNet101) | 77.3 | 80.2 | 66.7 | 72.8 | 83.9 | 70.8 | 76.8 |
Multi-Evidence | – | 80.4 | 70.2 | 74.9 | 85.2 | 72.5 | 78.4 |
ML-GCN (2019) | 82.4 | 84.4 | 71.4 | 77.4 | 85.8 | 74.5 | 79.8 |
ML-GCN(ResNeXt50 with ImageNet) | 86.2 | 85.8 | 77.3 | 81.3 | 86.2 | 79.7 | 82.8 |
A-GCN | 83.1 | 84.7 | 72.3 | 78.0 | 85.6 | 75.5 | 80.3 |
KSSNet | 83.7 | 84.6 | 73.2 | 77.2 | 87.8 | 76.2 | 81.5 |
SGTN (Our**) | 86.6 | 77.2 | 82.2 | 79.6 | 76.0 | 82.6 | 79.2 |
MGTN(Base) | 86.91 | 89.38 | 74.46 | 81.25 | 90.91 | 76.27 | 82.95 |
MGTN(Final} | 86.98 | 86.11 | 77.85 | 81.77 | 87.71 | 79.40 | 83.35 |
** SGTN (Our): https://github.com/ReML-AI/sgtn
python mgtn.py data/coco --image-size 448 --workers 8 --batch-size 32 --lr 0.03 --learning-rate-decay 0.1 --epoch_step 20 30 --embedding model/embedding/coco_glove_word2vec_80x300_ec.pkl --adj-strong-threshold 0.4 --adj-weak-threshold 0.2 --device_ids 0 1 2 3
@inproceedings{Nguyen:AAAI:2021,
author = {Nguyen, Hoang D. and Vu, Xuan-Son and Le, Duc-Trong},
title = {Modular Graph Transformer Networks for Multi-Label Image Classification},
booktitle = {Proceedings of the AAAI Conference on Artificial Intelligence},
series = {AAAI '21},
year = {2021},
publisher = {AAAI}
}
This project is based on the following implementations: