Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error with MetaspotsByGroups and ConstructMetaspots #250

Open
liuxiawei opened this issue Mar 29, 2024 · 4 comments
Open

Error with MetaspotsByGroups and ConstructMetaspots #250

liuxiawei opened this issue Mar 29, 2024 · 4 comments

Comments

@liuxiawei
Copy link

Describe the bug
When I use MetaspotsByGroups to treat my seurat_obj, It reports error. Looks like follow:

Not validating Seurat objectsNot validating Seurat objectsNot validating Seurat objectsNot validating Seurat objectsNot validating Seurat objectsError in array(x, c(length(x), 1L), if (!is.null(names(x))) list(names(x),  : 
  'data'must be a vector, not 'NULL'
收捲时出错: 'length = 140' in coercion to 'logical(1)'
Error: no more error handlers available (recursive errors?); invoking 'abort' restart

After I tired to debug. I found the problem may be from followed code (

tmp <- lapply(1:length(col_bounds), function(i){
) :
图片

In my test, I always get empty element with cur_coords
Sadly, It's so hard for me to deeply debug , I hope I could run this app.

seurat_obj<-some_seurat_for_10x
# make a dataframe containing the image coordinates for each sample
image_df <- do.call(rbind, lapply(names(seurat_obj@images), function(x){
  seurat_obj@images[[x]]@coordinates
}))

# merge the image_df with the Seurat metadata
new_meta <- merge([email protected], image_df, by='row.names')

# fix the row ordering to match the original seurat object
rownames(new_meta) <- new_meta$Row.names
ix <- match(as.character(colnames(seurat_obj)), as.character(rownames(new_meta)))
new_meta <- new_meta[ix,]

# add the new metadata to the seurat object
[email protected] <- new_meta

head(image_df)
seurat_obj <- seurat_obj %>%
  NormalizeData() %>%
  FindVariableFeatures() %>%
  ScaleData() %>%
  RunPCA()

# Louvain clustering and umap
seurat_obj <- FindNeighbors(seurat_obj, dims = 1:30)
seurat_obj <- FindClusters(seurat_obj,verbose = TRUE)
seurat_obj <- RunUMAP(seurat_obj, dims = 1:30)

# set factor level for anterior / posterior
# seurat_mouse_vis$region <- factor(as.character(seurat_mouse_vis$region), levels=c('anterior', 'posterior'))

# show the UMAP
p1 <- DimPlot(seurat_obj, label=TRUE, reduction = "umap", group.by = "seurat_clusters") + NoLegend()
p1
Idents(seurat_obj) <- seurat_obj$seurat_clusters

seurat_obj <- SetupForWGCNA(
  seurat_obj,
  # gene_select = "fraction",
  # fraction = 0.05,
  wgcna_name = "vis"
)

seurat_obj <-  MetaspotsByGroups(seurat_obj)

R session info

> devtools::session_info()
─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.3.1 (2023-06-16)
 os       UnionTech OS Desktop 20 Home
 system   x86_64, linux-gnu
 ui       RStudio
 language zh_CN
 collate  C.UTF-8
 ctype    C.UTF-8
 tz       Asia/Beijing
 date     2024-03-29
 rstudio  1.1.456 (desktop)
 pandoc   2.12 @ /home/liuxiawei/micromamba/envs/r/bin/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
 package              * version    date (UTC) lib source
 abind                  1.4-5      2016-07-21 [1] CRAN (R 4.3.1)
 AnnotationDbi          1.64.1     2023-11-03 [1] Bioconductor
 ape                    5.7-1      2023-03-13 [1] CRAN (R 4.3.1)
 assertthat             0.2.1      2019-03-21 [1] CRAN (R 4.3.1)
 backports              1.4.1      2021-12-13 [1] CRAN (R 4.3.1)
 base64enc              0.1-3      2015-07-28 [1] CRAN (R 4.3.1)
 beeswarm               0.4.0      2021-06-01 [1] CRAN (R 4.3.1)
 biglm                  0.9-2.1    2020-11-27 [1] CRAN (R 4.3.1)
 Biobase              * 2.62.0     2023-10-24 [1] Bioconductor
 BiocGenerics         * 0.48.1     2023-11-01 [1] Bioconductor
 BiocManager            1.30.22    2023-08-08 [1] CRAN (R 4.3.1)
 BiocParallel         * 1.36.0     2023-10-24 [1] Bioconductor
 Biostrings             2.70.1     2023-10-25 [1] Bioconductor
 bit                    4.0.5      2022-11-15 [1] CRAN (R 4.3.1)
 bit64                  4.0.5      2020-08-30 [1] CRAN (R 4.3.1)
 bitops                 1.0-7      2021-04-24 [1] CRAN (R 4.3.1)
 blob                   1.2.4      2023-03-17 [1] CRAN (R 4.3.1)
 boot                   1.3-30     2024-02-26 [1] CRAN (R 4.3.1)
 broom                  1.0.5      2023-06-09 [1] CRAN (R 4.3.1)
 bslib                  0.6.1      2023-11-28 [1] CRAN (R 4.3.1)
 cachem                 1.0.8      2023-05-01 [1] CRAN (R 4.3.1)
 callr                  3.7.5      2024-02-19 [1] CRAN (R 4.3.2)
 car                    3.1-2      2023-03-30 [1] CRAN (R 4.3.1)
 carData                3.0-5      2022-01-06 [1] CRAN (R 4.3.1)
 Cardinal             * 3.4.3      2023-11-23 [1] Bioconductor 3.18 (R 4.3.1)
 CardinalIO             1.0.0      2023-10-24 [1] Bioconductor
 checkmate              2.3.1      2023-12-04 [1] CRAN (R 4.3.1)
 class                  7.3-22     2023-05-03 [1] CRAN (R 4.3.1)
 classInt               0.4-10     2023-09-05 [1] CRAN (R 4.3.1)
 cli                    3.6.2      2023-12-11 [1] CRAN (R 4.3.2)
 cluster                2.1.6      2023-12-01 [1] CRAN (R 4.3.1)
 codetools              0.2-19     2023-02-01 [1] CRAN (R 4.3.1)
 colorspace             2.1-0      2023-01-23 [1] CRAN (R 4.3.1)
 confintr               1.0.2      2023-06-04 [1] CRAN (R 4.3.1)
 cowplot              * 1.1.3      2024-01-22 [1] CRAN (R 4.3.1)
 crayon                 1.5.2      2022-09-29 [1] CRAN (R 4.3.1)
 crosstalk              1.2.1      2023-11-23 [1] CRAN (R 4.3.1)
 curl                   5.2.1      2024-03-01 [1] CRAN (R 4.3.1)
 data.table             1.15.2     2024-02-29 [1] CRAN (R 4.3.1)
 DBI                    1.2.2      2024-02-16 [1] CRAN (R 4.3.2)
 dbscan                 1.1-12     2023-11-28 [1] CRAN (R 4.3.1)
 DelayedArray           0.28.0     2023-10-24 [1] Bioconductor
 DelayedMatrixStats     1.24.0     2023-10-24 [1] Bioconductor
 deldir                 2.0-4      2024-02-28 [1] CRAN (R 4.3.1)
 desc                   1.4.3      2023-12-10 [1] CRAN (R 4.3.2)
 devtools               2.4.5      2022-10-11 [1] CRAN (R 4.3.1)
 digest                 0.6.35     2024-03-11 [1] CRAN (R 4.3.1)
 doParallel             1.0.17     2022-02-07 [1] CRAN (R 4.3.1)
 dotCall64              1.1-1      2023-11-28 [1] CRAN (R 4.3.1)
 dplyr                * 1.1.4      2023-11-17 [1] CRAN (R 4.3.2)
 dynamicTreeCut       * 1.63-1     2016-03-11 [1] CRAN (R 4.3.1)
 e1071                  1.7-14     2023-12-06 [1] CRAN (R 4.3.2)
 EBImage              * 4.44.0     2023-10-24 [1] Bioconductor
 ellipsis               0.3.2      2021-04-29 [1] CRAN (R 4.3.1)
 evaluate               0.23       2023-11-01 [1] CRAN (R 4.3.1)
 fansi                  1.0.6      2023-12-08 [1] CRAN (R 4.3.1)
 farver                 2.1.1      2022-07-06 [1] CRAN (R 4.3.1)
 fastcluster          * 1.2.6      2024-01-12 [1] CRAN (R 4.3.1)
 fastDummies            1.7.3      2023-07-06 [1] CRAN (R 4.3.1)
 fastmap                1.1.1      2023-02-24 [1] CRAN (R 4.3.1)
 fftwtools              0.9-11     2021-03-01 [1] CRAN (R 4.3.1)
 fitdistrplus           1.1-11     2023-04-25 [1] CRAN (R 4.3.1)
 FNN                    1.1.4      2024-01-12 [1] CRAN (R 4.3.1)
 forcats              * 1.0.0      2023-01-29 [1] CRAN (R 4.3.1)
 foreach                1.5.2      2022-02-02 [1] CRAN (R 4.3.1)
 foreign                0.8-86     2023-11-28 [1] CRAN (R 4.3.1)
 Formula                1.2-5      2023-02-24 [1] CRAN (R 4.3.1)
 fs                     1.6.3      2023-07-20 [1] CRAN (R 4.3.1)
 future                 1.33.1     2023-12-22 [1] CRAN (R 4.3.2)
 future.apply           1.11.1     2023-12-21 [1] CRAN (R 4.3.2)
 generics               0.1.3      2022-07-05 [1] CRAN (R 4.3.1)
 GenomeInfoDb         * 1.38.8     2024-03-15 [1] Bioconductor 3.18 (R 4.3.1)
 GenomeInfoDbData       1.2.11     2024-03-20 [1] Bioconductor
 GenomicRanges        * 1.54.1     2023-10-29 [1] Bioconductor
 ggbeeswarm             0.7.2      2023-04-29 [1] CRAN (R 4.3.1)
 ggplot2              * 3.5.0      2024-02-23 [1] CRAN (R 4.3.1)
 ggpmisc              * 0.5.5      2023-11-15 [1] CRAN (R 4.3.1)
 ggpp                 * 0.5.6      2024-01-09 [1] CRAN (R 4.3.1)
 ggpubr               * 0.6.0      2023-02-10 [1] CRAN (R 4.3.1)
 ggrastr                1.0.2      2023-06-01 [1] CRAN (R 4.3.1)
 ggrepel              * 0.9.5      2024-01-10 [1] CRAN (R 4.3.1)
 ggridges               0.5.6      2024-01-23 [1] CRAN (R 4.3.1)
 ggsignif               0.6.4      2022-10-13 [1] CRAN (R 4.3.1)
 glmGamPoi              1.14.3     2024-02-11 [1] Bioconductor 3.18 (R 4.3.1)
 globals                0.16.3     2024-03-08 [1] CRAN (R 4.3.3)
 glue                   1.7.0      2024-01-09 [1] CRAN (R 4.3.1)
 GO.db                  3.18.0     2024-03-25 [1] Bioconductor
 goftest                1.2-3      2021-10-07 [1] CRAN (R 4.3.1)
 gridExtra              2.3        2017-09-09 [1] CRAN (R 4.3.1)
 grr                    0.9.5      2016-08-26 [1] CRAN (R 4.3.1)
 gtable                 0.3.4      2023-08-21 [1] CRAN (R 4.3.1)
 harmony              * 1.2.0      2023-11-29 [1] CRAN (R 4.3.1)
 hdf5r                  1.3.10     2024-03-02 [1] CRAN (R 4.3.1)
 hdWGCNA              * 0.3.01     2024-03-29 [1] Github (smorabit/hdWGCNA@b3b5acf)
 Hmisc                  5.1-2      2024-03-11 [1] CRAN (R 4.3.1)
 hms                    1.1.3      2023-03-21 [1] CRAN (R 4.3.1)
 htmlTable              2.4.2      2023-10-29 [1] CRAN (R 4.3.1)
 htmltools              0.5.7      2023-11-03 [1] CRAN (R 4.3.1)
 htmlwidgets            1.6.4      2023-12-06 [1] CRAN (R 4.3.1)
 httpuv                 1.6.14     2024-01-26 [1] CRAN (R 4.3.1)
 httr                   1.4.7      2023-08-15 [1] CRAN (R 4.3.1)
 ica                    1.0-3      2022-07-08 [1] CRAN (R 4.3.1)
 igraph               * 2.0.3      2024-03-13 [1] CRAN (R 4.3.1)
 impute                 1.76.0     2023-10-24 [1] Bioconductor
 IRanges              * 2.36.0     2023-10-24 [1] Bioconductor
 irlba                  2.3.5.1    2022-10-03 [1] CRAN (R 4.3.1)
 iterators              1.0.14     2022-02-05 [1] CRAN (R 4.3.1)
 jpeg                   0.1-10     2022-11-29 [1] CRAN (R 4.3.1)
 jquerylib              0.1.4      2021-04-26 [1] CRAN (R 4.3.1)
 jsonlite               1.8.8      2023-12-04 [1] CRAN (R 4.3.1)
 KEGGREST               1.42.0     2023-10-24 [1] Bioconductor
 KernSmooth             2.23-22    2023-07-10 [1] CRAN (R 4.3.1)
 knitr                  1.45       2023-10-30 [1] CRAN (R 4.3.1)
 labeling               0.4.3      2023-08-29 [1] CRAN (R 4.3.1)
 later                  1.3.2      2023-12-06 [1] CRAN (R 4.3.1)
 lattice                0.22-6     2024-03-20 [1] CRAN (R 4.3.1)
 lazyeval               0.2.2      2019-03-15 [1] CRAN (R 4.3.1)
 leiden                 0.4.3.1    2023-11-17 [1] CRAN (R 4.3.1)
 leidenbase             0.1.27     2023-12-01 [1] CRAN (R 4.3.1)
 lifecycle              1.0.4      2023-11-07 [1] CRAN (R 4.3.2)
 limma                  3.58.1     2023-10-31 [1] Bioconductor
 listenv                0.9.1      2024-01-29 [1] CRAN (R 4.3.1)
 lme4                   1.1-35.1   2023-11-05 [1] CRAN (R 4.3.1)
 lmodel2                1.7-3      2018-02-05 [1] CRAN (R 4.3.1)
 lmtest                 0.9-40     2022-03-21 [1] CRAN (R 4.3.1)
 locfit                 1.5-9.9    2024-03-01 [1] CRAN (R 4.3.1)
 lubridate            * 1.9.3      2023-09-27 [1] CRAN (R 4.3.1)
 magick               * 2.7.5      2023-08-07 [1] CRAN (R 4.3.1)
 magrittr             * 2.0.3      2022-03-30 [1] CRAN (R 4.3.1)
 MASS                   7.3-60.0.1 2024-01-13 [1] CRAN (R 4.3.1)
 Matrix                 1.6-5      2024-01-11 [1] CRAN (R 4.3.1)
 MatrixGenerics       * 1.14.0     2023-10-24 [1] Bioconductor
 MatrixModels           0.5-3      2023-11-06 [1] CRAN (R 4.3.1)
 matrixStats          * 1.2.0      2023-12-11 [1] CRAN (R 4.3.1)
 matter                 2.4.1      2024-03-13 [1] Bioconductor 3.18 (R 4.3.1)
 mclust                 6.1        2024-02-23 [1] CRAN (R 4.3.1)
 memoise                2.0.1      2021-11-26 [1] CRAN (R 4.3.1)
 mgcv                   1.9-1      2023-12-21 [1] CRAN (R 4.3.1)
 mime                   0.12       2021-09-28 [1] CRAN (R 4.3.1)
 miniUI                 0.1.1.1    2018-05-18 [1] CRAN (R 4.3.1)
 minqa                  1.2.6      2023-09-11 [1] CRAN (R 4.3.1)
 monocle3             * 1.3.1      2023-11-09 [1] Bioconductor
 munsell                0.5.0      2018-06-12 [1] CRAN (R 4.3.1)
 nlme                   3.1-164    2023-11-27 [1] CRAN (R 4.3.1)
 nloptr                 2.0.3      2022-05-26 [1] CRAN (R 4.3.1)
 nnet                   7.3-19     2023-05-03 [1] CRAN (R 4.3.1)
 ontologyIndex          2.12       2024-02-27 [1] CRAN (R 4.3.1)
 parallelly             1.37.1     2024-02-29 [1] CRAN (R 4.3.1)
 patchwork            * 1.2.0      2024-01-08 [1] CRAN (R 4.3.1)
 pbapply                1.7-2      2023-06-27 [1] CRAN (R 4.3.1)
 pbmcapply              1.5.1      2022-04-28 [1] CRAN (R 4.3.1)
 pheatmap               1.0.12     2019-01-04 [1] CRAN (R 4.3.1)
 pillar                 1.9.0      2023-03-22 [1] CRAN (R 4.3.1)
 pkgbuild               1.4.4      2024-03-17 [1] CRAN (R 4.3.1)
 pkgconfig              2.0.3      2019-09-22 [1] CRAN (R 4.3.1)
 pkgload                1.3.4      2024-01-16 [1] CRAN (R 4.3.1)
 plotly               * 4.10.4     2024-01-13 [1] CRAN (R 4.3.1)
 plyr                   1.8.9      2023-10-02 [1] CRAN (R 4.3.1)
 png                    0.1-8      2022-11-29 [1] CRAN (R 4.3.1)
 polyclip               1.10-6     2023-09-27 [1] CRAN (R 4.3.1)
 polynom                1.4-1      2022-04-11 [1] CRAN (R 4.3.1)
 preprocessCore         1.64.0     2023-10-24 [1] Bioconductor
 processx               3.8.4      2024-03-16 [1] CRAN (R 4.3.1)
 profvis                0.3.8      2023-05-02 [1] CRAN (R 4.3.1)
 progressr              0.14.0     2023-08-10 [1] CRAN (R 4.3.1)
 promises               1.2.1      2023-08-10 [1] CRAN (R 4.3.1)
 ProtGenerics         * 1.34.0     2023-10-24 [1] Bioconductor
 proxy                  0.4-27     2022-06-09 [1] CRAN (R 4.3.1)
 ps                     1.7.6      2024-01-18 [1] CRAN (R 4.3.1)
 purrr                * 1.0.2      2023-08-10 [1] CRAN (R 4.3.1)
 quantreg               5.97       2023-08-19 [1] CRAN (R 4.3.1)
 R.methodsS3            1.8.2      2022-06-13 [1] CRAN (R 4.3.1)
 R.oo                   1.26.0     2024-01-24 [1] CRAN (R 4.3.1)
 R.utils                2.12.3     2023-11-18 [1] CRAN (R 4.3.1)
 R6                     2.5.1      2021-08-19 [1] CRAN (R 4.3.1)
 ragg                   1.2.6      2023-10-10 [1] CRAN (R 4.3.1)
 RANN                   2.6.1      2019-01-08 [1] CRAN (R 4.3.1)
 RColorBrewer           1.1-3      2022-04-03 [1] CRAN (R 4.3.1)
 Rcpp                 * 1.0.12     2024-01-09 [1] CRAN (R 4.3.1)
 RcppAnnoy              0.0.22     2024-01-23 [1] CRAN (R 4.3.1)
 RcppHNSW               0.6.0      2024-02-04 [1] CRAN (R 4.3.1)
 RCurl                  1.98-1.14  2024-01-09 [1] CRAN (R 4.3.1)
 readr                * 2.1.5      2024-01-10 [1] CRAN (R 4.3.1)
 remotes                2.5.0      2024-03-17 [1] CRAN (R 4.3.1)
 reshape2               1.4.4      2020-04-09 [1] CRAN (R 4.3.1)
 reticulate             1.35.0     2024-01-31 [1] CRAN (R 4.3.1)
 rlang                  1.1.3      2024-01-10 [1] CRAN (R 4.3.1)
 rmarkdown              2.26       2024-03-05 [1] CRAN (R 4.3.1)
 ROCR                   1.0-11     2020-05-02 [1] CRAN (R 4.3.1)
 rpart                  4.1.23     2023-12-05 [1] CRAN (R 4.3.1)
 RSpectra               0.16-1     2022-04-24 [1] CRAN (R 4.3.1)
 RSQLite                2.3.1      2023-04-03 [1] CRAN (R 4.3.1)
 rstatix                0.7.2      2023-02-01 [1] CRAN (R 4.3.1)
 rstudioapi             0.15.0     2023-07-07 [1] CRAN (R 4.3.1)
 rsvd                   1.0.5      2021-04-16 [1] CRAN (R 4.3.1)
 Rtsne                  0.17       2023-12-07 [1] CRAN (R 4.3.1)
 s2                     1.1.6      2023-12-19 [1] CRAN (R 4.3.1)
 S4Arrays               1.2.1      2024-03-04 [1] Bioconductor 3.18 (R 4.3.1)
 S4Vectors            * 0.40.2     2023-11-23 [1] Bioconductor 3.18 (R 4.3.2)
 sass                   0.4.9      2024-03-15 [1] CRAN (R 4.3.1)
 scales               * 1.3.0      2023-11-28 [1] CRAN (R 4.3.1)
 scattermore            1.2        2023-06-12 [1] CRAN (R 4.3.1)
 sctransform            0.4.1      2023-10-19 [1] CRAN (R 4.3.1)
 semla                * 1.1.6      2024-03-28 [1] Github (ludvigla/semla@4ec7b9a)
 sessioninfo            1.2.2      2021-12-06 [1] CRAN (R 4.3.1)
 Seurat               * 5.0.3      2024-03-18 [1] CRAN (R 4.3.1)
 SeuratDisk           * 0.0.0.9021 2024-03-18 [1] Github (mojaveazure/seurat-disk@877d4e1)
 SeuratObject         * 5.0.1      2023-11-17 [1] CRAN (R 4.3.2)
 SeuratWrappers       * 0.3.4      2024-03-19 [1] Github (satijalab/seurat-wrappers@d9594f6)
 sf                     1.0-14     2023-07-11 [1] CRAN (R 4.3.0)
 shiny                  1.8.0      2023-11-17 [1] CRAN (R 4.3.1)
 shinyjs                2.1.0      2021-12-23 [1] CRAN (R 4.3.1)
 signal                 1.8-0      2023-11-27 [1] CRAN (R 4.3.1)
 SingleCellExperiment * 1.24.0     2023-10-24 [1] Bioconductor
 slam                   0.1-50     2022-01-08 [1] CRAN (R 4.3.1)
 sp                   * 2.1-3      2024-01-30 [1] CRAN (R 4.3.2)
 spam                   2.10-0     2023-10-23 [1] CRAN (R 4.3.1)
 SparseArray            1.2.4      2024-02-11 [1] Bioconductor 3.18 (R 4.3.1)
 SparseM                1.81       2021-02-18 [1] CRAN (R 4.3.1)
 sparseMatrixStats      1.14.0     2023-10-24 [1] Bioconductor
 spatstat.data          3.0-4      2024-01-15 [1] CRAN (R 4.3.2)
 spatstat.explore       3.2-6      2024-02-01 [1] CRAN (R 4.3.2)
 spatstat.geom          3.2-9      2024-02-28 [1] CRAN (R 4.3.2)
 spatstat.random        3.2-3      2024-02-29 [1] CRAN (R 4.3.3)
 spatstat.sparse        3.0-3      2023-10-24 [1] CRAN (R 4.3.1)
 spatstat.utils         3.0-4      2023-10-24 [1] CRAN (R 4.3.1)
 spData                 2.3.0      2023-07-06 [1] CRAN (R 4.3.1)
 spdep                  1.3-3      2024-02-07 [1] CRAN (R 4.3.1)
 statmod                1.5.0      2023-01-06 [1] CRAN (R 4.3.1)
 stringi                1.8.3      2023-12-11 [1] CRAN (R 4.3.1)
 stringr              * 1.5.1      2023-11-14 [1] CRAN (R 4.3.2)
 SummarizedExperiment * 1.32.0     2023-10-24 [1] Bioconductor
 survival               3.5-8      2024-02-14 [1] CRAN (R 4.3.1)
 systemfonts            1.0.5      2023-10-09 [1] CRAN (R 4.3.1)
 tensor                 1.5        2012-05-05 [1] CRAN (R 4.3.1)
 terra                  1.7-46     2023-09-06 [1] CRAN (R 4.3.1)
 tester                 0.1.7      2013-11-14 [1] CRAN (R 4.3.1)
 textshaping            0.3.7      2023-10-09 [1] CRAN (R 4.3.1)
 tibble               * 3.2.1      2023-03-20 [1] CRAN (R 4.3.1)
 tidyr                * 1.3.1      2024-01-24 [1] CRAN (R 4.3.2)
 tidyselect             1.2.1      2024-03-11 [1] CRAN (R 4.3.1)
 tidyverse            * 2.0.0      2023-02-22 [1] CRAN (R 4.3.1)
 tiff                   0.1-12     2023-11-28 [1] CRAN (R 4.3.1)
 timechange             0.3.0      2024-01-18 [1] CRAN (R 4.3.1)
 tzdb                   0.4.0      2023-05-12 [1] CRAN (R 4.3.1)
 units                  0.8-5      2023-11-28 [1] CRAN (R 4.3.1)
 urlchecker             1.0.1      2021-11-30 [1] CRAN (R 4.3.1)
 usethis                2.2.3      2024-02-19 [1] CRAN (R 4.3.1)
 utf8                   1.2.4      2023-10-22 [1] CRAN (R 4.3.1)
 uwot                   0.1.16     2023-06-29 [1] CRAN (R 4.3.1)
 vctrs                  0.6.5      2023-12-01 [1] CRAN (R 4.3.2)
 vipor                  0.4.7      2023-12-18 [1] CRAN (R 4.3.1)
 viridis                0.6.5      2024-01-29 [1] CRAN (R 4.3.1)
 viridisLite            0.4.2      2023-05-02 [1] CRAN (R 4.3.1)
 WGCNA                * 1.72-5     2023-12-07 [1] CRAN (R 4.3.1)
 withr                  3.0.0      2024-01-16 [1] CRAN (R 4.3.1)
 wk                     0.9.1      2023-11-29 [1] CRAN (R 4.3.1)
 xfun                   0.42       2024-02-08 [1] CRAN (R 4.3.1)
 xtable                 1.8-4      2019-04-21 [1] CRAN (R 4.3.1)
 XVector                0.42.0     2023-10-24 [1] Bioconductor
 yaml                   2.3.8      2023-12-11 [1] CRAN (R 4.3.1)
 zeallot                0.1.0      2018-01-28 [1] CRAN (R 4.3.1)
 zlibbioc               1.48.2     2024-03-13 [1] Bioconductor 3.18 (R 4.3.1)
 zoo                    1.8-12     2023-04-13 [1] CRAN (R 4.3.1)
@smorabit
Copy link
Owner

smorabit commented Apr 3, 2024

Hello,

Are you able to reproduce this error on the tutorial dataset? I tried and I am not able to. It is very difficult for me to help resolve issues unless I can reproduce the error on my side.

@liuxiawei
Copy link
Author

I'm very sad that the demo code is running right way. This is my seurat object. Could you please help to check it ?

str(ta_obj)
Formal class 'Seurat' [package "SeuratObject"] with 13 slots
  ..@ assays      :List of 2
  .. ..$ Spatial:Formal class 'Assay' [package "SeuratObject"] with 8 slots
  .. .. .. ..@ counts       :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
  .. .. .. .. .. ..@ i       : int [1:469954] 350 2731 3006 4777 8380 8959 10973 12171 13098 14525 ...
  .. .. .. .. .. ..@ p       : int [1:492] 0 21 605 2046 2601 2931 4209 6214 7711 7774 ...
  .. .. .. .. .. ..@ Dim     : int [1:2] 20092 491
  .. .. .. .. .. ..@ Dimnames:List of 2
  .. .. .. .. .. .. ..$ : chr [1:20092] "Gene0000010" "Gene0000020" "Gene0000030" "Gene0000040" ...
  .. .. .. .. .. .. ..$ : chr [1:491] "36077725294100" "36077725294200" "36077725294300" "36077725294400" ...
  .. .. .. .. .. ..@ x       : num [1:469954] 1 1 1 1 1 1 1 2 1 4 ...
  .. .. .. .. .. ..@ factors : list()
  .. .. .. ..@ data         :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
  .. .. .. .. .. ..@ i       : int [1:469954] 350 2731 3006 4777 8380 8959 10973 12171 13098 14525 ...
  .. .. .. .. .. ..@ p       : int [1:492] 0 21 605 2046 2601 2931 4209 6214 7711 7774 ...
  .. .. .. .. .. ..@ Dim     : int [1:2] 20092 491
  .. .. .. .. .. ..@ Dimnames:List of 2
  .. .. .. .. .. .. ..$ : chr [1:20092] "Gene0000010" "Gene0000020" "Gene0000030" "Gene0000040" ...
  .. .. .. .. .. .. ..$ : chr [1:491] "36077725294100" "36077725294200" "36077725294300" "36077725294400" ...
  .. .. .. .. .. ..@ x       : num [1:469954] 5.75 5.75 5.75 5.75 5.75 ...
  .. .. .. .. .. ..@ factors : list()
  .. .. .. ..@ scale.data   : num[0 , 0 ] 
  .. .. .. ..@ assay.orig   : NULL
  .. .. .. ..@ var.features : chr(0) 
  .. .. .. ..@ meta.features:'data.frame':	20092 obs. of  3 variables:
  .. .. .. .. ..$ n_cells : int [1:20092] 55 22 55 222 99 26 50 157 106 15 ...
  .. .. .. .. ..$ n_counts: int [1:20092] 92 36 86 415 167 49 73 280 171 21 ...
  .. .. .. .. ..$ mean_umi: num [1:20092] 1.67 1.64 1.56 1.87 1.69 ...
  .. .. .. ..@ misc         : Named list()
  .. .. .. ..@ key          : chr "spatial_"
  .. ..$ SCT    :Formal class 'SCTAssay' [package "Seurat"] with 9 slots
  .. .. .. ..@ SCTModel.list:List of 1
  .. .. .. .. ..$ model1:Formal class 'SCTModel' [package "Seurat"] with 7 slots
  .. .. .. .. .. .. ..@ feature.attributes:'data.frame':	12084 obs. of  12 variables:
  .. .. .. .. .. .. .. ..$ detection_rate       : num [1:12084] 0.053 0.0244 0.0489 0.2424 0.0998 ...
  .. .. .. .. .. .. .. ..$ gmean                : num [1:12084] 0.0538 0.0239 0.0428 0.2671 0.1037 ...
  .. .. .. .. .. .. .. ..$ variance             : num [1:12084] 0.288 0.09 0.132 0.925 0.421 ...
  .. .. .. .. .. .. .. ..$ residual_mean        : num [1:12084] 0.01555 -0.00331 -0.00583 0.00322 -0.00609 ...
  .. .. .. .. .. .. .. ..$ residual_variance    : num [1:12084] 1.125 0.411 0.603 1.014 0.827 ...
  .. .. .. .. .. .. .. ..$ theta                : num [1:12084] 0.0847 0.0384 0.0681 0.337 0.1509 ...
  .. .. .. .. .. .. .. ..$ (Intercept)          : num [1:12084] -10.86 -11.67 -11.09 -9.26 -10.19 ...
  .. .. .. .. .. .. .. ..$ log_umi              : num [1:12084] 2.3 2.3 2.3 2.3 2.3 ...
  .. .. .. .. .. .. .. ..$ genes_log_gmean_step1: logi [1:12084] FALSE TRUE FALSE FALSE FALSE FALSE ...
  .. .. .. .. .. .. .. ..$ step1_theta          : num [1:12084] NA 0.0393 NA NA NA ...
  .. .. .. .. .. .. .. ..$ step1_(Intercept)    : num [1:12084] NA -11.8 NA NA NA ...
  .. .. .. .. .. .. .. ..$ step1_log_umi        : num [1:12084] NA 2.3 NA NA NA ...
  .. .. .. .. .. .. ..@ cell.attributes   :'data.frame':	491 obs. of  3 variables:
  .. .. .. .. .. .. .. ..$ umi        : num [1:491] 32 2966 7874 2277 1121 ...
  .. .. .. .. .. .. .. ..$ log_umi    : num [1:491] 1.51 3.47 3.9 3.36 3.05 ...
  .. .. .. .. .. .. .. ..$ cells_step1: logi [1:491] TRUE TRUE TRUE TRUE TRUE TRUE ...
  .. .. .. .. .. .. ..@ clips             :List of 2
  .. .. .. .. .. .. .. ..$ vst: num [1:2] -22.2 22.2
  .. .. .. .. .. .. .. ..$ sct: num [1:2] -4.05 4.05
  .. .. .. .. .. .. ..@ umi.assay         : chr "Spatial"
  .. .. .. .. .. .. ..@ model             : chr "y ~ log_umi"
  .. .. .. .. .. .. ..@ arguments         :List of 33
  .. .. .. .. .. .. .. ..$ glmGamPoi_check          : logi TRUE
  .. .. .. .. .. .. .. ..$ latent_var               : chr "log_umi"
  .. .. .. .. .. .. .. ..$ batch_var                : NULL
  .. .. .. .. .. .. .. ..$ latent_var_nonreg        : NULL
  .. .. .. .. .. .. .. ..$ n_genes                  : num 2000
  .. .. .. .. .. .. .. ..$ n_cells                  : num 491
  .. .. .. .. .. .. .. ..$ method                   : chr "glmGamPoi_offset"
  .. .. .. .. .. .. .. ..$ do_regularize            : logi TRUE
  .. .. .. .. .. .. .. ..$ theta_regularization     : chr "od_factor"
  .. .. .. .. .. .. .. ..$ res_clip_range           : num [1:2] -22.2 22.2
  .. .. .. .. .. .. .. ..$ bin_size                 : num 500
  .. .. .. .. .. .. .. ..$ min_cells                : num 5
  .. .. .. .. .. .. .. ..$ residual_type            : chr "pearson"
  .. .. .. .. .. .. .. ..$ return_cell_attr         : logi TRUE
  .. .. .. .. .. .. .. ..$ return_gene_attr         : logi TRUE
  .. .. .. .. .. .. .. ..$ return_corrected_umi     : logi TRUE
  .. .. .. .. .. .. .. ..$ min_variance             : chr "umi_median"
  .. .. .. .. .. .. .. ..$ bw_adjust                : num 3
  .. .. .. .. .. .. .. ..$ gmean_eps                : num 1
  .. .. .. .. .. .. .. ..$ theta_estimation_fun     : chr "theta.ml"
  .. .. .. .. .. .. .. ..$ theta_given              : NULL
  .. .. .. .. .. .. .. ..$ exclude_poisson          : logi TRUE
  .. .. .. .. .. .. .. ..$ use_geometric_mean       : logi TRUE
  .. .. .. .. .. .. .. ..$ use_geometric_mean_offset: logi FALSE
  .. .. .. .. .. .. .. ..$ fix_intercept            : logi FALSE
  .. .. .. .. .. .. .. ..$ fix_slope                : logi FALSE
  .. .. .. .. .. .. .. ..$ scale_factor             : logi NA
  .. .. .. .. .. .. .. ..$ vst.flavor               : chr "v2"
  .. .. .. .. .. .. .. ..$ verbosity                : num 0
  .. .. .. .. .. .. .. ..$ verbose                  : NULL
  .. .. .. .. .. .. .. ..$ show_progress            : NULL
  .. .. .. .. .. .. .. ..$ set_min_var              : num 0.16
  .. .. .. .. .. .. .. ..$ sct.clip.range           : num [1:2] -4.05 4.05
  .. .. .. .. .. .. ..@ median_umi        : num 4153
  .. .. .. ..@ counts       :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
  .. .. .. .. .. ..@ i       : int [1:429533] 14 61 73 107 147 187 192 223 244 250 ...
  .. .. .. .. .. ..@ p       : int [1:492] 0 644 1219 2551 3098 3508 4745 6165 7529 8150 ...
  .. .. .. .. .. ..@ Dim     : int [1:2] 12084 491
  .. .. .. .. .. ..@ Dimnames:List of 2
  .. .. .. .. .. .. ..$ : chr [1:12084] "Gene0000010" "Gene0000020" "Gene0000030" "Gene0000040" ...
  .. .. .. .. .. .. ..$ : chr [1:491] "36077725294100" "36077725294200" "36077725294300" "36077725294400" ...
  .. .. .. .. .. ..@ x       : num [1:429533] 10 3 2 5 1 1 1 1 4 1 ...
  .. .. .. .. .. ..@ factors : list()
  .. .. .. ..@ data         :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
  .. .. .. .. .. ..@ i       : int [1:429533] 14 61 73 107 147 187 192 223 244 250 ...
  .. .. .. .. .. ..@ p       : int [1:492] 0 644 1219 2551 3098 3508 4745 6165 7529 8150 ...
  .. .. .. .. .. ..@ Dim     : int [1:2] 12084 491
  .. .. .. .. .. ..@ Dimnames:List of 2
  .. .. .. .. .. .. ..$ : chr [1:12084] "Gene0000010" "Gene0000020" "Gene0000030" "Gene0000040" ...
  .. .. .. .. .. .. ..$ : chr [1:491] "36077725294100" "36077725294200" "36077725294300" "36077725294400" ...
  .. .. .. .. .. ..@ x       : num [1:429533] 3.54 2.4 2.04 2.87 1.47 ...
  .. .. .. .. .. ..@ factors : list()
  .. .. .. ..@ scale.data   : num [1:2000, 1:491] -0.212 -0.504 -0.386 -0.251 0.41 ...
  .. .. .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. .. .. ..$ : chr [1:2000] "Gene0000010" "Gene0000040" "Gene0000080" "Gene0000130" ...
  .. .. .. .. .. ..$ : chr [1:491] "36077725294100" "36077725294200" "36077725294300" "36077725294400" ...
  .. .. .. ..@ assay.orig   : chr "Spatial"
  .. .. .. ..@ var.features : chr [1:2000] "Gene0062990" "Gene0061940" "Gene0118390" "Gene0327200" ...
  .. .. .. ..@ meta.features:'data.frame':	12084 obs. of  0 variables
  .. .. .. ..@ misc         : Named list()
  .. .. .. ..@ key          : chr "sct_"
  ..@ meta.data   :'data.frame':	491 obs. of  18 variables:
  .. ..$ Row.names       : 'AsIs' chr [1:491] "36077725294100" "36077725294200" "36077725294300" "36077725294400" ...
  .. ..$ _index          : chr [1:491] "36077725294100" "36077725294200" "36077725294300" "36077725294400" ...
  .. ..$ nCount_Spatial  : num [1:491] 32 2966 7874 2277 1121 ...
  .. ..$ nFeature_Spatial: int [1:491] 21 584 1441 555 330 1278 2005 1497 63 391 ...
  .. ..$ orig.ident      : chr [1:491] "A" "A" "A" "A" ...
  .. ..$ percent.mito    : num [1:491] 0 0 0 0 0 0 0 0 0 0 ...
  .. ..$ x               : int [1:491] 8400 8400 8400 8400 8500 8500 8500 8500 8600 8600 ...
  .. ..$ y               : int [1:491] 7700 7800 7900 8000 7700 7800 7900 8000 6700 6800 ...
  .. ..$ nCount_SCT      : num [1:491] 2995 3923 4438 3790 3493 ...
  .. ..$ nFeature_SCT    : int [1:491] 644 575 1332 547 410 1237 1420 1364 621 446 ...
  .. ..$ SCT_snn_res.1.2 : Factor w/ 7 levels "0","1","2","3",..: 2 5 1 1 2 1 1 1 2 2 ...
  .. ..$ seurat_clusters : Factor w/ 5 levels "0","1","2","3",..: 5 1 1 1 3 1 1 1 5 1 ...
  .. ..$ tissue          : num [1:491] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ row             : num [1:491] 5201 5301 5401 5501 5201 ...
  .. ..$ col             : num [1:491] 3201 3201 3201 3201 3301 ...
  .. ..$ imagerow        : num [1:491] 5201 5301 5401 5501 5201 ...
  .. ..$ imagecol        : num [1:491] 3201 3201 3201 3201 3301 ...
  .. ..$ SCT_snn_res.0.8 : Factor w/ 5 levels "0","1","2","3",..: 5 1 1 1 3 1 1 1 5 1 ...
  ..@ active.assay: chr "SCT"
  ..@ active.ident: Factor w/ 5 levels "0","1","2","3",..: 5 1 1 1 3 1 1 1 5 1 ...
  .. ..- attr(*, "names")= chr [1:491] "36077725294100" "36077725294200" "36077725294300" "36077725294400" ...
  ..@ graphs      :List of 2
  .. ..$ SCT_nn :Formal class 'Graph' [package "SeuratObject"] with 7 slots
  .. .. .. ..@ assay.used: chr "SCT"
  .. .. .. ..@ i         : int [1:9820] 0 8 37 54 74 95 234 235 236 237 ...
  .. .. .. ..@ p         : int [1:492] 0 21 55 62 74 138 159 168 183 210 ...
  .. .. .. ..@ Dim       : int [1:2] 491 491
  .. .. .. ..@ Dimnames  :List of 2
  .. .. .. .. ..$ : chr [1:491] "36077725294100" "36077725294200" "36077725294300" "36077725294400" ...
  .. .. .. .. ..$ : chr [1:491] "36077725294100" "36077725294200" "36077725294300" "36077725294400" ...
  .. .. .. ..@ x         : num [1:9820] 1 1 1 1 1 1 1 1 1 1 ...
  .. .. .. ..@ factors   : list()
  .. ..$ SCT_snn:Formal class 'Graph' [package "SeuratObject"] with 7 slots
  .. .. .. ..@ assay.used: chr "SCT"
  .. .. .. ..@ i         : int [1:39087] 0 8 12 15 16 37 54 74 95 117 ...
  .. .. .. ..@ p         : int [1:492] 0 32 143 229 344 431 534 586 647 679 ...
  .. .. .. ..@ Dim       : int [1:2] 491 491
  .. .. .. ..@ Dimnames  :List of 2
  .. .. .. .. ..$ : chr [1:491] "36077725294100" "36077725294200" "36077725294300" "36077725294400" ...
  .. .. .. .. ..$ : chr [1:491] "36077725294100" "36077725294200" "36077725294300" "36077725294400" ...
  .. .. .. ..@ x         : num [1:39087] 1 1 0.29 0.379 0.333 ...
  .. .. .. ..@ factors   : list()
  ..@ neighbors   : list()
  ..@ reductions  :List of 2
  .. ..$ pca :Formal class 'DimReduc' [package "SeuratObject"] with 9 slots
  .. .. .. ..@ cell.embeddings           : num [1:491, 1:50] -0.321 7.57 11.047 8.912 5.363 ...
  .. .. .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. .. .. ..$ : chr [1:491] "36077725294100" "36077725294200" "36077725294300" "36077725294400" ...
  .. .. .. .. .. ..$ : chr [1:50] "PC_1" "PC_2" "PC_3" "PC_4" ...
  .. .. .. ..@ feature.loadings          : num [1:2000, 1:50] -0.0706 -0.0691 -0.0804 -0.077 -0.0722 ...
  .. .. .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. .. .. ..$ : chr [1:2000] "Gene0062990" "Gene0061940" "Gene0118390" "Gene0327200" ...
  .. .. .. .. .. ..$ : chr [1:50] "PC_1" "PC_2" "PC_3" "PC_4" ...
  .. .. .. ..@ feature.loadings.projected: num[0 , 0 ] 
  .. .. .. ..@ assay.used                : chr "SCT"
  .. .. .. ..@ global                    : logi FALSE
  .. .. .. ..@ stdev                     : num [1:50] 8.38 7.7 4.84 4.04 3.89 ...
  .. .. .. ..@ jackstraw                 :Formal class 'JackStrawData' [package "SeuratObject"] with 4 slots
  .. .. .. .. .. ..@ empirical.p.values     : num[0 , 0 ] 
  .. .. .. .. .. ..@ fake.reduction.scores  : num[0 , 0 ] 
  .. .. .. .. .. ..@ empirical.p.values.full: num[0 , 0 ] 
  .. .. .. .. .. ..@ overall.p.values       : num[0 , 0 ] 
  .. .. .. ..@ misc                      :List of 1
  .. .. .. .. ..$ total.variance: num 1994
  .. .. .. ..@ key                       : chr "PC_"
  .. ..$ umap:Formal class 'DimReduc' [package "SeuratObject"] with 9 slots
  .. .. .. ..@ cell.embeddings           : num [1:491, 1:2] -4.518 -2.5526 -0.0788 -1.302 -3.5134 ...
  .. .. .. .. ..- attr(*, "scaled:center")= num [1:2] -7.54 -5.65
  .. .. .. .. ..- attr(*, "dimnames")=List of 2
  .. .. .. .. .. ..$ : chr [1:491] "36077725294100" "36077725294200" "36077725294300" "36077725294400" ...
  .. .. .. .. .. ..$ : chr [1:2] "umap_1" "umap_2"
  .. .. .. ..@ feature.loadings          : num[0 , 0 ] 
  .. .. .. ..@ feature.loadings.projected: num[0 , 0 ] 
  .. .. .. ..@ assay.used                : chr "SCT"
  .. .. .. ..@ global                    : logi TRUE
  .. .. .. ..@ stdev                     : num(0) 
  .. .. .. ..@ jackstraw                 :Formal class 'JackStrawData' [package "SeuratObject"] with 4 slots
  .. .. .. .. .. ..@ empirical.p.values     : num[0 , 0 ] 
  .. .. .. .. .. ..@ fake.reduction.scores  : num[0 , 0 ] 
  .. .. .. .. .. ..@ empirical.p.values.full: num[0 , 0 ] 
  .. .. .. .. .. ..@ overall.p.values       : num[0 , 0 ] 
  .. .. .. ..@ misc                      : list()
  .. .. .. ..@ key                       : chr "umap_"
  ..@ images      :List of 1
  .. ..$ slice1:Formal class 'VisiumV1' [package "Seurat"] with 6 slots
  .. .. .. ..@ image        : num [1:6101, 1:5901] 1 1 1 1 1 1 1 1 1 1 ...
  .. .. .. ..@ scale.factors:List of 4
  .. .. .. .. ..$ spot    : num 1
  .. .. .. .. ..$ fiducial: num 1
  .. .. .. .. ..$ hires   : num 1
  .. .. .. .. ..$ lowres  : num 1
  .. .. .. .. ..- attr(*, "class")= chr "scalefactors"
  .. .. .. ..@ coordinates  :'data.frame':	491 obs. of  5 variables:
  .. .. .. .. ..$ tissue  : num [1:491] 1 1 1 1 1 1 1 1 1 1 ...
  .. .. .. .. ..$ row     : num [1:491] 5201 5301 5401 5501 5201 ...
  .. .. .. .. ..$ col     : num [1:491] 3201 3201 3201 3201 3301 ...
  .. .. .. .. ..$ imagerow: num [1:491] 5201 5301 5401 5501 5201 ...
  .. .. .. .. ..$ imagecol: num [1:491] 3201 3201 3201 3201 3301 ...
  .. .. .. ..@ spot.radius  : num 0.000164
  .. .. .. ..@ assay        : chr "Spatial"
  .. .. .. ..@ key          : chr "slice1_"
  ..@ project.name: chr "AnnData"
  ..@ misc        :List of 6
  .. ..$ raw_cellname: chr [1:984] "22333829942000" "22333829942100" "22333829942200" "22333829942300" ...
  .. ..$ raw_counts  :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
  .. .. .. ..@ i       : int [1:965369] 14 77 92 142 218 272 350 405 492 560 ...
  .. .. .. ..@ p       : int [1:985] 0 253 936 1901 2909 3419 3465 3553 4323 5593 ...
  .. .. .. ..@ Dim     : int [1:2] 20092 984
  .. .. .. ..@ Dimnames:List of 2
  .. .. .. .. ..$ : NULL
  .. .. .. .. ..$ : NULL
  .. .. .. ..@ x       : num [1:965369] 3 1 1 1 1 1 2 1 3 1 ...
  .. .. .. ..@ factors : list()
  .. ..$ raw_genename: chr [1:20092] "Gene0000010" "Gene0000020" "Gene0000030" "Gene0000040" ...
  .. ..$ sn          :List of 3
  .. .. ..$ _index: int 0
  .. .. ..$ batch : chr "-1"
  .. .. ..$ sn    : chr "B03203E412"
  .. ..$ active_wgcna: chr "vis"
  .. ..$ vis         :List of 1
  .. .. ..$ wgcna_genes: chr [1:4058] "Gene0000040" "Gene0000050" "Gene0000070" "Gene0000080" ...
  ..@ version     :Classes 'package_version', 'numeric_version'  hidden list of 1
  .. ..$ : int [1:4] 3 1 5 9900
  ..@ commands    :List of 9
  .. ..$ NormalizeData.Spatial   :Formal class 'SeuratCommand' [package "SeuratObject"] with 5 slots
  .. .. .. ..@ name       : chr "NormalizeData.Spatial"
  .. .. .. ..@ time.stamp : POSIXct[1:1], format: "2024-03-18 12:11:13"
  .. .. .. ..@ assay.used : chr "Spatial"
  .. .. .. ..@ call.string: chr "NormalizeData(object)"
  .. .. .. ..@ params     :List of 5
  .. .. .. .. ..$ assay               : chr "Spatial"
  .. .. .. .. ..$ normalization.method: chr "LogNormalize"
  .. .. .. .. ..$ scale.factor        : num 10000
  .. .. .. .. ..$ margin              : num 1
  .. .. .. .. ..$ verbose             : logi TRUE
  .. ..$ SCTransform.Spatial     :Formal class 'SeuratCommand' [package "SeuratObject"] with 5 slots
  .. .. .. ..@ name       : chr "SCTransform.Spatial"
  .. .. .. ..@ time.stamp : POSIXct[1:1], format: "2024-04-08 19:49:28"
  .. .. .. ..@ assay.used : chr "Spatial"
  .. .. .. ..@ call.string: chr "SCTransform(tA, assay = \"Spatial\", verbose = FALSE)"
  .. .. .. ..@ params     :List of 14
  .. .. .. .. ..$ assay                  : chr "Spatial"
  .. .. .. .. ..$ new.assay.name         : chr "SCT"
  .. .. .. .. ..$ do.correct.umi         : logi TRUE
  .. .. .. .. ..$ ncells                 : num 5000
  .. .. .. .. ..$ variable.features.n    : num 3000
  .. .. .. .. ..$ variable.features.rv.th: num 1.3
  .. .. .. .. ..$ do.scale               : logi FALSE
  .. .. .. .. ..$ do.center              : logi TRUE
  .. .. .. .. ..$ clip.range             : num [1:2] -4.05 4.05
  .. .. .. .. ..$ vst.flavor             : chr "v2"
  .. .. .. .. ..$ conserve.memory        : logi FALSE
  .. .. .. .. ..$ return.only.var.genes  : logi TRUE
  .. .. .. .. ..$ seed.use               : num 1448145
  .. .. .. .. ..$ verbose                : logi FALSE
  .. ..$ NormalizeData.SCT       :Formal class 'SeuratCommand' [package "SeuratObject"] with 5 slots
  .. .. .. ..@ name       : chr "NormalizeData.SCT"
  .. .. .. ..@ time.stamp : POSIXct[1:1], format: "2024-04-08 19:57:51"
  .. .. .. ..@ assay.used : chr "SCT"
  .. .. .. ..@ call.string: chr "NormalizeData(.)"
  .. .. .. ..@ params     :List of 5
  .. .. .. .. ..$ assay               : chr "SCT"
  .. .. .. .. ..$ normalization.method: chr "LogNormalize"
  .. .. .. .. ..$ scale.factor        : num 10000
  .. .. .. .. ..$ margin              : num 1
  .. .. .. .. ..$ verbose             : logi TRUE
  .. ..$ FindVariableFeatures.SCT:Formal class 'SeuratCommand' [package "SeuratObject"] with 5 slots
  .. .. .. ..@ name       : chr "FindVariableFeatures.SCT"
  .. .. .. ..@ time.stamp : POSIXct[1:1], format: "2024-04-08 19:57:51"
  .. .. .. ..@ assay.used : chr "SCT"
  .. .. .. ..@ call.string: chr "FindVariableFeatures(.)"
  .. .. .. ..@ params     :List of 12
  .. .. .. .. ..$ assay              : chr "SCT"
  .. .. .. .. ..$ selection.method   : chr "vst"
  .. .. .. .. ..$ loess.span         : num 0.3
  .. .. .. .. ..$ clip.max           : chr "auto"
  .. .. .. .. ..$ mean.function      :function (mat, display_progress)  
  .. .. .. .. ..$ dispersion.function:function (mat, display_progress)  
  .. .. .. .. ..$ num.bin            : num 20
  .. .. .. .. ..$ binning.method     : chr "equal_width"
  .. .. .. .. ..$ nfeatures          : num 2000
  .. .. .. .. ..$ mean.cutoff        : num [1:2] 0.1 8
  .. .. .. .. ..$ dispersion.cutoff  : num [1:2] 1 Inf
  .. .. .. .. ..$ verbose            : logi TRUE
  .. ..$ ScaleData.SCT           :Formal class 'SeuratCommand' [package "SeuratObject"] with 5 slots
  .. .. .. ..@ name       : chr "ScaleData.SCT"
  .. .. .. ..@ time.stamp : POSIXct[1:1], format: "2024-04-08 19:57:51"
  .. .. .. ..@ assay.used : chr "SCT"
  .. .. .. ..@ call.string: chr "ScaleData(.)"
  .. .. .. ..@ params     :List of 10
  .. .. .. .. ..$ features          : chr [1:2000] "Gene0062990" "Gene0061940" "Gene0118390" "Gene0327200" ...
  .. .. .. .. ..$ assay             : chr "SCT"
  .. .. .. .. ..$ model.use         : chr "linear"
  .. .. .. .. ..$ use.umi           : logi FALSE
  .. .. .. .. ..$ do.scale          : logi TRUE
  .. .. .. .. ..$ do.center         : logi TRUE
  .. .. .. .. ..$ scale.max         : num 10
  .. .. .. .. ..$ block.size        : num 1000
  .. .. .. .. ..$ min.cells.to.block: num 491
  .. .. .. .. ..$ verbose           : logi TRUE
  .. ..$ RunPCA.SCT              :Formal class 'SeuratCommand' [package "SeuratObject"] with 5 slots
  .. .. .. ..@ name       : chr "RunPCA.SCT"
  .. .. .. ..@ time.stamp : POSIXct[1:1], format: "2024-04-08 19:57:52"
  .. .. .. ..@ assay.used : chr "SCT"
  .. .. .. ..@ call.string: chr "RunPCA(.)"
  .. .. .. ..@ params     :List of 10
  .. .. .. .. ..$ assay          : chr "SCT"
  .. .. .. .. ..$ npcs           : num 50
  .. .. .. .. ..$ rev.pca        : logi FALSE
  .. .. .. .. ..$ weight.by.var  : logi TRUE
  .. .. .. .. ..$ verbose        : logi TRUE
  .. .. .. .. ..$ ndims.print    : int [1:5] 1 2 3 4 5
  .. .. .. .. ..$ nfeatures.print: num 30
  .. .. .. .. ..$ reduction.name : chr "pca"
  .. .. .. .. ..$ reduction.key  : chr "PC_"
  .. .. .. .. ..$ seed.use       : num 42
  .. ..$ FindNeighbors.SCT.pca   :Formal class 'SeuratCommand' [package "SeuratObject"] with 5 slots
  .. .. .. ..@ name       : chr "FindNeighbors.SCT.pca"
  .. .. .. ..@ time.stamp : POSIXct[1:1], format: "2024-04-08 19:57:53"
  .. .. .. ..@ assay.used : chr "SCT"
  .. .. .. ..@ call.string: chr "FindNeighbors(ta_obj, dims = 1:30)"
  .. .. .. ..@ params     :List of 16
  .. .. .. .. ..$ reduction      : chr "pca"
  .. .. .. .. ..$ dims           : int [1:30] 1 2 3 4 5 6 7 8 9 10 ...
  .. .. .. .. ..$ assay          : chr "SCT"
  .. .. .. .. ..$ k.param        : num 20
  .. .. .. .. ..$ return.neighbor: logi FALSE
  .. .. .. .. ..$ compute.SNN    : logi TRUE
  .. .. .. .. ..$ prune.SNN      : num 0.0667
  .. .. .. .. ..$ nn.method      : chr "annoy"
  .. .. .. .. ..$ n.trees        : num 50
  .. .. .. .. ..$ annoy.metric   : chr "euclidean"
  .. .. .. .. ..$ nn.eps         : num 0
  .. .. .. .. ..$ verbose        : logi TRUE
  .. .. .. .. ..$ do.plot        : logi FALSE
  .. .. .. .. ..$ graph.name     : chr [1:2] "SCT_nn" "SCT_snn"
  .. .. .. .. ..$ l2.norm        : logi FALSE
  .. .. .. .. ..$ cache.index    : logi FALSE
  .. ..$ FindClusters            :Formal class 'SeuratCommand' [package "SeuratObject"] with 5 slots
  .. .. .. ..@ name       : chr "FindClusters"
  .. .. .. ..@ time.stamp : POSIXct[1:1], format: "2024-04-08 19:57:53"
  .. .. .. ..@ assay.used : chr "SCT"
  .. .. .. ..@ call.string: chr "FindClusters(ta_obj, verbose = TRUE)"
  .. .. .. ..@ params     :List of 11
  .. .. .. .. ..$ graph.name      : chr "SCT_snn"
  .. .. .. .. ..$ cluster.name    : chr "SCT_snn_res.0.8"
  .. .. .. .. ..$ modularity.fxn  : num 1
  .. .. .. .. ..$ resolution      : num 0.8
  .. .. .. .. ..$ method          : chr "matrix"
  .. .. .. .. ..$ algorithm       : num 1
  .. .. .. .. ..$ n.start         : num 10
  .. .. .. .. ..$ n.iter          : num 10
  .. .. .. .. ..$ random.seed     : num 0
  .. .. .. .. ..$ group.singletons: logi TRUE
  .. .. .. .. ..$ verbose         : logi TRUE
  .. ..$ RunUMAP.SCT.pca         :Formal class 'SeuratCommand' [package "SeuratObject"] with 5 slots
  .. .. .. ..@ name       : chr "RunUMAP.SCT.pca"
  .. .. .. ..@ time.stamp : POSIXct[1:1], format: "2024-04-08 19:57:57"
  .. .. .. ..@ assay.used : chr "SCT"
  .. .. .. ..@ call.string: chr "RunUMAP(ta_obj, dims = 1:30)"
  .. .. .. ..@ params     :List of 25
  .. .. .. .. ..$ dims                : int [1:30] 1 2 3 4 5 6 7 8 9 10 ...
  .. .. .. .. ..$ reduction           : chr "pca"
  .. .. .. .. ..$ assay               : chr "SCT"
  .. .. .. .. ..$ slot                : chr "data"
  .. .. .. .. ..$ umap.method         : chr "uwot"
  .. .. .. .. ..$ return.model        : logi FALSE
  .. .. .. .. ..$ n.neighbors         : int 30
  .. .. .. .. ..$ n.components        : int 2
  .. .. .. .. ..$ metric              : chr "cosine"
  .. .. .. .. ..$ learning.rate       : num 1
  .. .. .. .. ..$ min.dist            : num 0.3
  .. .. .. .. ..$ spread              : num 1
  .. .. .. .. ..$ set.op.mix.ratio    : num 1
  .. .. .. .. ..$ local.connectivity  : int 1
  .. .. .. .. ..$ repulsion.strength  : num 1
  .. .. .. .. ..$ negative.sample.rate: int 5
  .. .. .. .. ..$ uwot.sgd            : logi FALSE
  .. .. .. .. ..$ seed.use            : int 42
  .. .. .. .. ..$ angular.rp.forest   : logi FALSE
  .. .. .. .. ..$ densmap             : logi FALSE
  .. .. .. .. ..$ dens.lambda         : num 2
  .. .. .. .. ..$ dens.frac           : num 0.3
  .. .. .. .. ..$ dens.var.shift      : num 0.1
  .. .. .. .. ..$ verbose             : logi TRUE
  .. .. .. .. ..$ reduction.name      : chr "umap"
  ..@ tools       : Named list()

@YaoZY157
Copy link

YaoZY157 commented Jul 9, 2024

I have the same problem. Did solve the problem? @liuxiawei

@liuxiawei
Copy link
Author

I have the same problem. Did solve the problem? @liuxiawei

No

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants