Bogumił Kamiński, April 30, 2019
The tutorial is for DataFrames 0.18.1.
A brief introduction to basic usage of DataFrames. Tested under Julia 1.1, CSV 0.4.3, CSVFiles 0.15.0, CategoricalArrays 0.5.2, DataFrames 0.18.1, DataFramesMeta 0.4.1, Feather 0.5.1, FileIO 1.0.6, FreqTables 0.3.1, PooledArrays 0.5.1, StatsPlots 0.10.2, Tables 0.1.19. Also package BenchmarkTools 0.4.2 is used as a utility.
I will try to keep the material up to date as the packages evolve.
This tutorial covers DataFrames, CSV, CSVFiles, Feather, and CategoricalArrays, as they constitute the core of DataFrames.
In the last extras part mentions selected functionalities of selected useful packages that I find useful for data manipulation, currently those are: FreqTables, DataFramesMeta, StatsPlots.
By default Jupyter Notebook will limit the number of rows and columns when displaying a data frame to roughly fit the screen size (like in the REPL).
You can override this behavior by setting ENV["COLUMNS"]
or ENV["LINES"]
variables to hold the maximum width and height of output in characters respectively before using the notebook
function. Alternatively you can add the following entry "COLUMNS": "1000", "LINES": "100"
to "env"
variable in your Jupyter kernel file. See here for information about location and specification of Jupyter kernels.
File | Topic |
---|---|
01_constructors.ipynb | Creating DataFrame and conversion |
02_basicinfo.ipynb | Getting summary information |
03_missingvalues.ipynb | Handling missing values |
04_loadsave.ipynb | Loading and saving DataFrames |
05_columns.ipynb | Working with columns of DataFrame |
06_rows.ipynb | Working with row of DataFrame |
07_factors.ipynb | Working with categorical data |
08_joins.ipynb | Joining DataFrames |
09_reshaping.ipynb | Reshaping DataFrames |
10_transforms.ipynb | Transforming DataFrames |
11_performance.ipynb | Performance tips |
12_pitfalls.ipynb | Possible pitfalls |
13_extras.ipynb | Additional interesting packages |
Changelog:
Date | Changes |
---|---|
2017-12-05 | Initial release |
2017-12-06 | Added description of insert! , merge! , empty! , categorical! , delete! , DataFrames.index |
2017-12-09 | Added performance tips |
2017-12-10 | Added pitfalls |
2017-12-18 | Added additional worthwhile packages: FreqTables and DataFramesMeta |
2017-12-29 | Added description of filter and filter! |
2017-12-31 | Added description of conversion to Matrix |
2018-04-06 | Added example of extracting a row from a DataFrame |
2018-04-21 | Major update of whole tutorial |
2018-05-01 | Added byrow! example |
2018-05-13 | Added StatPlots package to extras |
2018-05-23 | Improved comments in sections 1 do 5 by Jane Herriman |
2018-07-25 | Update to 0.11.7 release |
2018-08-25 | Update to Julia 1.0 release: sections 1 to 10 |
2018-08-29 | Update to Julia 1.0 release: sections 11, 12 and 13 |
2018-09-05 | Update to Julia 1.0 release: FreqTables section |
2018-09-10 | Added CSVFiles section to chapter on load/save |
2018-09-26 | Updated to DataFrames 0.14.0 |
2018-10-04 | Updated to DataFrames 0.14.1, added haskey and repeat |
2018-12-08 | Updated to DataFrames 0.15.2 |
2018-01-03 | Updated to DataFrames 0.16.0, added serialization instructions |
2018-01-18 | Updated to DataFrames 0.17.0, added passmissing |
2018-01-27 | Added Feather.jl file read/write |
2018-01-30 | Renamed StatPlots.jl to StatsPlots.jl and added Tables.jl |
2018-02-08 | Added groupvars and groupindices functions |
2018-04-27 | Updated to DataFrames 0.18.0, dropped JLD2.jl |
2018-04-30 | Updated handling of missing values description |
- Constructors:
DataFrame
,DataFrame!
,Tables.rowtable
,Tables.columntable
,Matrix
- Getting summary:
size
,nrow
,ncol
,describe
,names
,eltypes
,first
,last
,getindex
,setindex!
,@view
- Handling missing:
missing
(singleton instance ofMissing
),ismissing
,Missings.T
,skipmissing
,replace
,replace!
,coalesce
,allowmissing
,disallowmissing
,allowmissing!
,completecases
,dropmissing
,dropmissing!
,disallowmissing
,disallowmissing!
,passmissing
- Loading and saving:
CSV
(package),CSVFiles
(package),Serialization
(module),CSV.read
,CSV.write
,save
,load
,serialize
,deserialize
,Feather.write
,Feather.read
,Feather.materialize
(fromFeather
) - Working with columns:
rename
,rename!
,names!
,hcat
,insertcol!
,DataFrames.hcat!
,deletecols
,deletecols!
,empty!
,categorical!
,DataFrames.index
,permutedims!
,haskey
,select
,select!
- Working with rows:
sort!
,sort
,issorted
,append!
,vcat
,push!
,view
,filter
,filter!
,deleterows!
,unique
,nonunique
,unique!
,repeat
,parent
,parentindices
- Working with categorical:
categorical
,cut
,isordered
,ordered!
,levels
,unique
,levels!
,droplevels!
,get
,recode
,recode!
- Joining:
join
- Reshaping:
stack
,melt
,stackdf
,meltdf
,unstack
- Transforming:
groupby
,vcat
,by
,aggregate
,eachcol
,eachrow
,mapcols
,parent
,groupvars
,groupindices
- Extras:
- FreqTables:
freqtable
,prop
- DataFramesMeta:
@with
,@where
,@select
,@transform
,@orderby
,@linq
,by
,based_on
,byrow!
- StatsPlots:
@df
,plot
,density
,histogram
,boxplot
,violin
- FreqTables: