Skip to content

Commit

Permalink
Merge branch 'master' into kmod_scripts_new_branch
Browse files Browse the repository at this point in the history
  • Loading branch information
JoschD committed Nov 6, 2024
2 parents 71ec204 + 351b2a7 commit b1530c5
Show file tree
Hide file tree
Showing 86 changed files with 4,074 additions and 682 deletions.
29 changes: 28 additions & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,15 +1,42 @@
# OMC3 Changelog

#### 2024-10-24 - v0.17.0 - _fscarlier_, _jdilly_
#### 2024-XX-XX - v0.19.0 - _fscarlier_, _jdilly_

- Added K-Modulation tools:
- `kmod_importer`: Main function to call the following scripts in succession.
- `kmod_averages`: Combine k-modulation results into a single file
- `kmod_lumi_imbalance`: Calculate the luminosity imbalance IP1 / IP5 from k-modulation results
- `kmod_import`: Import k-modulation results into an `optics_measurements` directory as `beta_kmod_().tfs` file.

- Removed:
- Old k-modulation scripts: Functionality is either in k-mod GUI or in newly added scripts.


#### 2024-10-29 - v0.18.0 - _jgray_

- Added:
- Add the ability to calculate a deltap/p offset caused by a change in orbit.
- Add the ability to use `response_madx` to calculate the updated response matrix for the global correction.
- Tests for the calculation of the deltap/p and corresponding correction.
- Tests for the calculation of the updated response matrix for the global correction.

- Fixed:
- Fixed the `response_twiss` when updating the response matrix when calculating the global correction.


#### 2024-10-29 - v0.17.0 - _jdilly_

- Added:
- Optics Measurements: `analyse_dpp` parameter, to analyse only files with a specific DPP for tune, phase and (C)RDTs.

- Fixed:
- Uncompensated Phase calculations with `Equation` compensation are now actually uncompensated when passed on to the `coupling` module.

#### 2024-10-28 - v0.16.2 - _jdilly_

- Fixed:
- Temporary hack to fix `knob_extractor` in CCC.

#### 2024-09-20 - v0.16.1 - _fsoubelet_

- Fixed:
Expand Down
2 changes: 1 addition & 1 deletion omc3/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
__title__ = "omc3"
__description__ = "An accelerator physics tools package for the OMC team at CERN."
__url__ = "https://github.com/pylhc/omc3"
__version__ = "0.17.0"
__version__ = "0.19.0"
__author__ = "pylhc"
__author_email__ = "[email protected]"
__license__ = "MIT"
Expand Down
1 change: 1 addition & 0 deletions omc3/correction/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@

# For FullResponse
INCR: str = "incr"
ORBIT_DPP: str = "orbit_dpp"

# Correction Test Constants ----------------------------------------------------
MODEL_NOMINAL_FILENAME: str = "twiss_nominal.tfs" # using twiss from model for now
Expand Down
2 changes: 1 addition & 1 deletion omc3/correction/filters.py
Original file line number Diff line number Diff line change
Expand Up @@ -167,7 +167,7 @@ def _get_errorbased_weights(key: str, weights, errors):
# TODO case without errors used may corrupt the correction (typical error != 1)
w2 = stats.weights_from_errors(errors)
if w2 is None:
LOG.warn(
LOG.warning(
f"Weights will not be based on errors for '{key}'"
f", zeros of NaNs were found. Maybe don't use --errorbars."
)
Expand Down
74 changes: 61 additions & 13 deletions omc3/correction/handler.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,15 +10,16 @@
import time
from pathlib import Path
from typing import TYPE_CHECKING
import copy

import numpy as np
import pandas as pd
import tfs
from sklearn.linear_model import OrthogonalMatchingPursuit

import omc3.madx_wrapper as madx_wrapper
from omc3.correction import filters, model_appenders, response_twiss
from omc3.correction.constants import DIFF, ERROR, VALUE, WEIGHT
from omc3.correction import filters, model_appenders, response_twiss, response_madx
from omc3.correction.constants import DIFF, ERROR, VALUE, WEIGHT, ORBIT_DPP
from omc3.correction.model_appenders import add_coupling_to_model
from omc3.correction.response_io import read_fullresponse
from omc3.model.accelerators.accelerator import Accelerator
Expand Down Expand Up @@ -48,6 +49,8 @@ def correct(accel_inst: Accelerator, opt: DotDict) -> None:
method_options = opt.get_subdict(["svd_cut", "n_correctors"])
# read data from files
vars_list = _get_varlist(accel_inst, opt.variable_categories)
update_deltap = ORBIT_DPP in vars_list

optics_params, meas_dict = get_measurement_data(
opt.optics_params,
opt.meas_dir,
Expand Down Expand Up @@ -76,10 +79,10 @@ def correct(accel_inst: Accelerator, opt: DotDict) -> None:

# ######### Update Model and Response ######### #
if iteration > 0:
LOG.debug("Updating model via MADX.")
LOG.debug("Updating model via MAD-X.")
corr_model_path = opt.output_dir / f"twiss_{iteration}{EXT}"

corr_model_elements = _create_corrected_model(corr_model_path, [opt.change_params_path], accel_inst)
corr_model_elements = _create_corrected_model(corr_model_path, [opt.change_params_path], accel_inst, update_deltap)
corr_model_elements = _maybe_add_coupling_to_model(corr_model_elements, optics_params)

bpms_index_mask = accel_inst.get_element_types_mask(corr_model_elements.index, types=["bpm"])
Expand All @@ -88,11 +91,15 @@ def correct(accel_inst: Accelerator, opt: DotDict) -> None:
meas_dict = model_appenders.add_differences_to_model_to_measurements(corr_model, meas_dict)

if opt.update_response:
LOG.debug("Updating response.")
# please look away for the next two lines.
accel_inst._model = corr_model
accel_inst._elements = corr_model_elements
resp_dict = response_twiss.create_response(accel_inst, opt.variable_categories, optics_params)
resp_dict = _update_response(
accel_inst=accel_inst,
corrected_elements=corr_model_elements,
optics_params=optics_params,
corr_files=[opt.change_params_path],
variable_categories=opt.variable_categories,
update_dpp=update_deltap,
update_response=opt.update_response,
)
resp_dict = filters.filter_response_index(resp_dict, meas_dict, optics_params)
resp_matrix = _join_responses(resp_dict, optics_params, vars_list)

Expand All @@ -109,6 +116,47 @@ def correct(accel_inst: Accelerator, opt: DotDict) -> None:
LOG.info("Finished Iterative Global Correction.")



def _update_response(
accel_inst: Accelerator,
corrected_elements: pd.DataFrame,
optics_params: Sequence[str],
corr_files: Sequence[Path],
variable_categories: Sequence[str],
update_dpp: bool,
update_response: bool | str,
) -> dict[str, pd.DataFrame]:
""" Create an updated response matrix.
If we are to compute the response including the DPP, then we have to do so from MAD-X,
as we do not have the analytical formulae. This therefore requires correction files to be
provided.
Otherwise we go through the way of computing the response the user requested.
All other parameters are taken care of in the model/elements for the response_twiss only.
"""
# update model by creating a copy of the accelerator instance
accel_inst_cp = copy.copy(accel_inst)

# Modifiers is None or list, if none, we need to make a list before extending it with the correction files
accel_inst_cp.modifiers = list(accel_inst_cp.modifiers or []) + corr_files

if update_dpp:
LOG.info("Updating response via MAD-X, due to delta dpp requested.")
resp_dict = response_madx.create_fullresponse(accel_inst_cp, variable_categories)
else:
if update_response == "madx":
LOG.info("Updating response via MAD-X.")
resp_dict = response_madx.create_fullresponse(accel_inst_cp, variable_categories)
else:
LOG.info("Updating response via analytical formulae.")
accel_inst_cp.elements = corrected_elements
# accel_inst_cp.model = corrected_model # - Not needed, don't think it's used by response_twiss (jgray 2024)
resp_dict = response_twiss.create_response(accel_inst_cp, variable_categories, optics_params)

return resp_dict


# Input ------------------------------------------------------------------------


Expand Down Expand Up @@ -216,9 +264,9 @@ def _maybe_add_coupling_to_model(model: tfs.TfsDataFrame, keys: Sequence[str]) -
return model


def _create_corrected_model(twiss_out: Path | str, change_params: Sequence[Path], accel_inst: Accelerator) -> tfs.TfsDataFrame:
def _create_corrected_model(twiss_out: Path | str, corr_files: Sequence[Path], accel_inst: Accelerator, update_dpp: bool = False) -> tfs.TfsDataFrame:
""" Use the calculated deltas in changeparameters.madx to create a corrected model """
madx_script: str = accel_inst.get_update_correction_script(twiss_out, change_params)
madx_script: str = accel_inst.get_update_correction_script(twiss_out, corr_files, update_dpp)
twiss_out_path = Path(twiss_out)
madx_script = f"! Based on model '{accel_inst.model_dir}'\n" + madx_script
madx_wrapper.run_string(
Expand Down Expand Up @@ -314,11 +362,11 @@ def _calculate_delta(
def _print_rms(meas: dict, diff_w, r_delta_w) -> None:
""" Prints current RMS status """
f_str = "{:>20s} : {:.5e}"
LOG.debug("RMS Measure - Model (before correction, w/o weigths):")
LOG.debug("RMS Measure - Model (before correction, w/o weights):")
for key in meas:
LOG.debug(f_str.format(key, rms(meas[key].loc[:, DIFF].to_numpy())))

LOG.info("RMS Measure - Model (before correction, w/ weigths):")
LOG.info("RMS Measure - Model (before correction, w/ weights):")
for key in meas:
LOG.info(f_str.format(key, rms(meas[key].loc[:, DIFF].to_numpy() * meas[key].loc[:, WEIGHT].to_numpy())))

Expand Down
73 changes: 51 additions & 22 deletions omc3/correction/response_madx.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,28 +12,41 @@
:author: Lukas Malina, Joschua Dilly, Jaime (...) Coello de Portugal
"""
from __future__ import annotations

import copy
import multiprocessing
import zipfile
from pathlib import Path
from typing import Dict, Sequence, Tuple, List
from typing import TYPE_CHECKING

import numpy as np
import zipfile
import pandas as pd
import tfs
from numpy.exceptions import ComplexWarning
from optics_functions.coupling import coupling_via_cmatrix

import omc3.madx_wrapper as madx_wrapper
from omc3.optics_measurements.constants import (BETA, DISPERSION, F1001, F1010,
NORM_DISPERSION, PHASE_ADV, TUNE)
from omc3.correction.constants import INCR
from omc3.model.accelerators.accelerator import Accelerator, AccElementTypes
from omc3.correction.constants import INCR, ORBIT_DPP
from omc3.model.accelerators.accelerator import AccElementTypes, Accelerator
from omc3.optics_measurements.constants import (
BETA,
DISPERSION,
F1001,
F1010,
NAME,
NORM_DISPERSION,
PHASE_ADV,
TUNE,
)
from omc3.utils import logging_tools
from omc3.utils.contexts import suppress_warnings, timeit

LOG = logging_tools.get_logger(__name__)

if TYPE_CHECKING:
from collections.abc import Sequence


# Full Response Mad-X ##########################################################

Expand All @@ -44,7 +57,7 @@ def create_fullresponse(
delta_k: float = 2e-5,
num_proc: int = multiprocessing.cpu_count(),
temp_dir: Path = None
) -> Dict[str, pd.DataFrame]:
) -> dict[str, pd.DataFrame]:
""" Generate a dictionary containing response matrices for
beta, phase, dispersion, tune and coupling and saves it to a file.
Expand Down Expand Up @@ -83,31 +96,47 @@ def _generate_madx_jobs(
delta_k: float,
num_proc: int,
temp_dir: Path
) -> Dict[str, float]:
) -> dict[str, float]:
""" Generates madx job-files """
LOG.debug("Generating MADX jobfiles.")
LOG.debug("Generating MAD-X jobfiles.")
incr_dict = {'0': 0.0}
vars_per_proc = int(np.ceil(len(variables) / num_proc))
compute_deltap: bool = ORBIT_DPP in variables
no_dpp_vars = [var for var in variables if var != ORBIT_DPP]
vars_per_proc = int(np.ceil(len(no_dpp_vars) / num_proc))

madx_job = _get_madx_job(accel_inst)
deltap_twiss = ""
if compute_deltap:
# This is here only for multiple iteration of the global correction
# By including dpp here, it means that if deltap is in variables and dpp is not 0, the orbit and tune magnets change
# We have to be very careful that DELTAP_NAME is not used ANYWHERE else in MAD-X
madx_job += f"{ORBIT_DPP} = {accel_inst.dpp};\n" # Set deltap to 0
madx_job += accel_inst.get_update_deltap_script(deltap=ORBIT_DPP)
deltap_twiss = f", deltap={ORBIT_DPP}"

for proc_idx in range(num_proc):
jobfile_path = _get_jobfiles(temp_dir, proc_idx)

current_job = madx_job
for i in range(vars_per_proc):
var_idx = proc_idx * vars_per_proc + i
if var_idx >= len(variables):
if var_idx >= len(no_dpp_vars):
break
var = variables[var_idx]
var = no_dpp_vars[var_idx]
incr_dict[var] = delta_k
current_job += f"{var} = {var}{delta_k:+.15e};\n"
current_job += f"twiss, file='{str(temp_dir / f'twiss.{var}')}';\n"
current_job += f"twiss, file='{str(temp_dir / f'twiss.{var}')}'{deltap_twiss};\n"
current_job += f"{var} = {var}{-delta_k:+.15e};\n\n"

if proc_idx == num_proc - 1:
current_job += f"twiss, file='{str(temp_dir / 'twiss.0')}';\n"

current_job += f"twiss, file='{str(temp_dir / 'twiss.0')}'{deltap_twiss};\n"

if compute_deltap: # If ORBIT_DPP is in variables, we run this in the last iteration
# Due to the match and correction of the orbit, this needs to be run at the end of the process
incr_dict[ORBIT_DPP] = delta_k
current_job += f"{ORBIT_DPP} = {ORBIT_DPP}{delta_k:+.15e};\n"
current_job += accel_inst.get_update_deltap_script(deltap=ORBIT_DPP) # Do twiss, correct, match
current_job += f"twiss, deltap={ORBIT_DPP}, file='{str(temp_dir/f'twiss.{ORBIT_DPP}')}';\n"
jobfile_path.write_text(current_job)
return incr_dict

Expand Down Expand Up @@ -154,11 +183,11 @@ def _clean_up(temp_dir: Path, num_proc: int) -> None:


def _load_madx_results(
variables: List[str],
variables: list[str],
process_pool,
incr_dict: dict,
temp_dir: Path
) -> Dict[str, tfs.TfsDataFrame]:
) -> dict[str, tfs.TfsDataFrame]:
""" Load the madx results in parallel and return var-tfs dictionary """
LOG.debug("Loading Madx Results.")
vars_and_paths = []
Expand All @@ -171,7 +200,7 @@ def _load_madx_results(
return var_to_twiss


def _create_fullresponse_from_dict(var_to_twiss: Dict[str, tfs.TfsDataFrame]) -> Dict[str, pd.DataFrame]:
def _create_fullresponse_from_dict(var_to_twiss: dict[str, tfs.TfsDataFrame]) -> dict[str, pd.DataFrame]:
""" Convert var-tfs dictionary to fullresponse dictionary. """
var_to_twiss = _add_coupling(var_to_twiss)
keys = list(var_to_twiss.keys())
Expand Down Expand Up @@ -243,25 +272,25 @@ def _launch_single_job(inputfile_path: Path) -> None:
madx_wrapper.run_file(inputfile_path, log_file=log_file, cwd=inputfile_path.parent)


def _load_and_remove_twiss(var_and_path: Tuple[str, Path]) -> Tuple[str, tfs.TfsDataFrame]:
def _load_and_remove_twiss(var_and_path: tuple[str, Path]) -> tuple[str, tfs.TfsDataFrame]:
""" Function for pool to retrieve results """
(var, path) = var_and_path
twissfile = path / f"twiss.{var}"
tfs_data = tfs.read(twissfile, index="NAME")
tfs_data = tfs.read(twissfile, index=NAME)
tfs_data[f"{TUNE}1"] = tfs_data.Q1
tfs_data[f"{TUNE}2"] = tfs_data.Q2
twissfile.unlink()
return var, tfs_data


def _add_coupling(dict_of_tfs: Dict[str, tfs.TfsDataFrame]) -> Dict[str, tfs.TfsDataFrame]:
def _add_coupling(dict_of_tfs: dict[str, tfs.TfsDataFrame]) -> dict[str, tfs.TfsDataFrame]:
"""
For each TfsDataFrame in the input dictionary, computes the coupling RDTs and adds a column for
the real and imaginary parts of the computed coupling RDTs. Returns a copy of the input dictionary with
the aforementioned computed columns added for each TfsDataFrame.
Args:
dict_of_tfs (Dict[str, tfs.TfsDataFrame]): dictionary of Twiss dataframes.
dict_of_tfs (dict[str, tfs.TfsDataFrame]): dictionary of Twiss dataframes.
Returns:
An identical dictionary of Twiss dataframes, with the computed columns added.
Expand Down
Loading

0 comments on commit b1530c5

Please sign in to comment.