Skip to content

pochoi/CosmoDeepLearning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 

Repository files navigation

CosmoDeepLearning

List of Deep Learning methods for Cosmology

  • DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications
    Nathanaël Perraudin, Michaël Defferrard, Tomasz Kacprzak, Raphael Sgier
    https://arxiv.org/abs/1810.12186
    https://github.com/SwissDataScienceCenter/DeepSphere

  • DeepCMB: Lensing Reconstruction of the Cosmic Microwave Background with Deep Neural Networks
    J. Caldeira, W. L. K. Wu, B. Nord, C. Avestruz, S. Trivedi, K. T. Story
    https://arxiv.org/abs/1810.01483

  • Analysis of Cosmic Microwave Background with Deep Learning
    Siyu He, Siamak Ravanbakhsh, Shirley Ho
    https://openreview.net/forum?id=B15uoOyvz

  • Creating Virtual Universes Using Generative Adversarial Networks
    Mustafa Mustafa, Deborah Bard, Wahid Bhimji, Zarija Lukić, Rami Al-Rfou, Jan Kratochvil
    https://arxiv.org/abs/1706.02390 https://github.com/MustafaMustafa/cosmoGAN

  • Fast Cosmic Web Simulations with Generative Adversarial Networks
    Andres C. Rodriguez, Tomasz Kacprzak, Aurelien Lucchi, Adam Amara, Raphael Sgier, Janis Fluri, Thomas Hofmann, Alexandre Réfrégier
    https://arxiv.org/abs/1801.09070

  • Cosmological model discrimination with Deep Learning
    Jorit Schmelzle, Aurelien Lucchi, Tomasz Kacprzak, Adam Amara, Raphael Sgier, Alexandre Réfrégier, Thomas Hofmann
    https://arxiv.org/abs/1707.05167

  • Learning to Predict the Cosmological Structure Formation
    Siyu He, Yin Li, Yu Feng, Shirley Ho, Siamak Ravanbakhsh, Wei Chen, Barnabás Póczos
    https://arxiv.org/abs/1811.06533

  • Estimating Cosmological Parameters from the Dark Matter Distribution
    Siamak Ravanbakhsh, Junier Oliva, Sebastien Fromenteau, Layne C. Price, Shirley Ho, Jeff Schneider, Barnabas Poczos
    https://arxiv.org/abs/1711.02033

  • CosmoFlow: Using Deep Learning to Learn the Universe at Scale
    Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Meadows, James Arnemann, Lei Shao, Siyu He, Tuomas Karna, Daina Moise, Simon J. Pennycook, Kristyn Maschoff, Jason Sewall, Nalini Kumar, Shirley Ho, Mike Ringenburg, Prabhat, Victor Lee
    https://arxiv.org/abs/1808.04728

  • Non-Gaussian information from weak lensing data via deep learning
    Arushi Gupta, José Manuel Zorrilla Matilla, Daniel Hsu, Zoltán Haiman
    https://arxiv.org/abs/1802.01212

  • Fast Automated Analysis of Strong Gravitational Lenses with Convolutional Neural Networks Yashar D. Hezaveh, Laurence Perreault Levasseur, Philip J. Marshall
    https://arxiv.org/abs/1708.08842

  • Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing
    Laurence Perreault Levasseur, Yashar D. Hezaveh, Risa H. Wechsler
    https://arxiv.org/abs/1708.08843

  • CMU DeepLens: Deep Learning For Automatic Image-based Galaxy-Galaxy Strong Lens Finding
    Francois Lanusse, Quanbin Ma, Nan Li, Thomas E. Collett, Chun-Liang Li, Siamak Ravanbakhsh, Rachel Mandelbaum, Barnabas Poczos
    https://arxiv.org/abs/1703.02642
    https://github.com/McWilliamsCenter/CMUDeepLens

About

List of Deep Learning methods on Cosmology

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published