Skip to content

A NLP Project for Chinese Spell Checking Task Released on ACL2023.

License

Notifications You must be signed in to change notification settings

piglaker/SpecialEdition

Repository files navigation

Chinese Spell Check

训练纠错模型的代码对于ACL 2023 (Findings): Investigating Glyph Phonetic Information for Chinese Spell Checking: What Works and What's Next

论文中分析及Probe 指标见另一github仓库ConfusionCluster

1.Install all the requirements.

use ./scripts/sighan/generate.py to generate data in ./data/rawdata/sighan

2.bash run.sh

Start-up

python >= 3.7 创建conda环境
conda create -n ctcSE python=3.7

then 安装必要包
conda activate ctcSE
pip3 install -r requirements.txt

install nvcc 安装nvcc 略

apex 安装apex用于分布式训练
bash install_apex
or

git clone https://github.com/NVIDIA/apex  
cd apex  
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" . 

install pytorch for your CUDA & GPU 安装gpu version的torch
example:
conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 -c pytorch
or
pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/torch_stable.html

maybe forget 安装datasets库 pip install datasets==1.2.0

test env 测试环境是否正确 sh test.sh"

Data

原始训练数据来自Training Dataset 处理后:分为raw和holy,

下载并解压后分别放在如下路径: 原始版本:./data/rawdata/sighan/raw
去重版本:./data/rawdata/sighan/holy

Note:

dir:

  • ./data
  • ./models
  • ./logs
  • ./models
  • ./scripts
  • ./utils

core:

  • metric
  • load_model
  • load_dataset
  • args_process

main:
out/err redirect

lib:
hack transformers' trainer

About

A NLP Project for Chinese Spell Checking Task Released on ACL2023.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published