This is not an officially supported Google product.
This repository is a collection code files and artifacts for running Robotics Transformer or RT-1.
- Film efficient net based image tokenizer backbone
- Token learner based compression of input tokens
- Transformer for end to end robotic control
- Testing utilities
Clone the repo
git clone https://github.com/google-research/robotics_transformer.git
pip install -r robotics_transformer/requirements.txt
python -m robotics_transformer.tokenizers.action_tokenizer.test
To run RT-1 tests, you can clone the git repo and run bazel:
git clone https://github.com/google_research/robotics_transformer.git
cd robotics_transformer
bazel test ...
Checkpoints are included in trained_checkpoints/ folder for three models:
- RT-1 trained on 700 tasks
- RT-1 jointly trained on EDR and Kuka data
- RT-1 jointly trained on sim and real data
They are tensorflow SavedModel files. Instructions on usage can be found here
The current repository includes an initial set of libraries for early adoption. More components may come in future releases.
The Robotics Transformer library is licensed under the terms of the Apache license.
本工程来自于google的robotics transformer工作,在此基础上增加了:
1,读取rlds数据,以language table为例
2,增加分布式训练代码
step1, 下载language_table数据, 见https://github.com/google-research/language-table
step2, 下载Universal Sentence Encoder模型,将数据集中的文本(UTF-8)转化成USE embedding,依然是RLDS格式
step3, 设置distribute_train.py里的变量
step4, 开启训练 python distribute_train.py
1, 使用RT1开源的数据集进行训练,编写相应数据加载代码;
2, 使用梯度累积,混合精度训练,增加单卡batch_size;
3, 融合更多传感器信息,如深度等;
抛砖引玉,欢迎大家提pull request