Skip to content

Commit

Permalink
🏷 Convert adaptive_threshold to Enum in configs (#637)
Browse files Browse the repository at this point in the history
* Rename image/pixel_metrics_names to image/pixel_metrics

* Rename image/pixel_metrics_names to image/pixel_metrics

* Modified config files.

* Modify get_callbacks function for the old cli

* Create pre-processing-configuration callback

* Add new CLI configuration for the post-processing configuration

* Add options to normalization_method

* Address mypy issues

* Fix docstring

* Address codacy issues

* renamed adaptive: true to threshold_method: adaptive in config.yaml files

* Reorder threshold params in config.yaml

* Add backward compatibility to threshold configs

* renamed the new cli config files

* Rename threshold_method to method in config.yaml

* Convert names to Enum

* Fix tests

* Rename AdaptiveThreshold to AnomalyScoreThreshold

* Fixed import

* Rename fixed to manual

* Rename some left-over variables.
  • Loading branch information
samet-akcay authored Oct 18, 2022
1 parent 1ba8d12 commit dacf3f4
Show file tree
Hide file tree
Showing 34 changed files with 173 additions and 117 deletions.
16 changes: 14 additions & 2 deletions anomalib/config/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,7 +156,19 @@ def get_configurable_parameters(

# thresholding
if "metrics" in config.keys():
if "pixel_default" not in config.metrics.threshold.keys():
config.metrics.threshold.pixel_default = config.metrics.threshold.image_default
# NOTE: Deprecate this after v0.4.0.
if "adaptive" in config.metrics.threshold.keys():
warn("adaptive will be deprecated in favor of method in config.metrics.threshold in v0.4.0.")
config.metrics.threshold.method = "adaptive" if config.metrics.threshold.adaptive else "manual"
if "image_default" in config.metrics.threshold.keys():
warn("image_default will be deprecated in favor of manual_image in config.metrics.threshold in v0.4.0.")
config.metrics.threshold.manual_image = (
None if config.metrics.threshold.adaptive else config.metrics.threshold.image_default
)
if "pixel_default" in config.metrics.threshold.keys():
warn("pixel_default will be deprecated in favor of manual_pixel in config.metrics.threshold in v0.4.0.")
config.metrics.threshold.manual_pixel = (
None if config.metrics.threshold.adaptive else config.metrics.threshold.pixel_default
)

return config
6 changes: 3 additions & 3 deletions anomalib/models/cflow/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -43,9 +43,9 @@ metrics:
- F1Score
- AUROC
threshold:
image_default: 0
pixel_default: 0
adaptive: true
method: adaptive #options: [adaptive, manual]
manual_image: null
manual_pixel: null

visualization:
show_images: False # show images on the screen
Expand Down
12 changes: 6 additions & 6 deletions anomalib/models/components/base/anomaly_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,10 +13,11 @@
from torch import Tensor, nn
from torchmetrics import Metric

from anomalib.post_processing import ThresholdMethod
from anomalib.utils.metrics import (
AdaptiveThreshold,
AnomalibMetricCollection,
AnomalyScoreDistribution,
AnomalyScoreThreshold,
MinMax,
)

Expand All @@ -38,10 +39,9 @@ def __init__(self):
self.loss: Tensor
self.callbacks: List[Callback]

self.adaptive_threshold: bool

self.image_threshold = AdaptiveThreshold().cpu()
self.pixel_threshold = AdaptiveThreshold().cpu()
self.threshold_method: ThresholdMethod
self.image_threshold = AnomalyScoreThreshold().cpu()
self.pixel_threshold = AnomalyScoreThreshold().cpu()

self.normalization_metrics: Metric

Expand Down Expand Up @@ -115,7 +115,7 @@ def validation_epoch_end(self, outputs):
Args:
outputs: Batch of outputs from the validation step
"""
if self.adaptive_threshold:
if self.threshold_method == ThresholdMethod.ADAPTIVE:
self._compute_adaptive_threshold(outputs)
self._collect_outputs(self.image_metrics, self.pixel_metrics, outputs)
self._log_metrics()
Expand Down
4 changes: 2 additions & 2 deletions anomalib/models/dfkde/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -32,8 +32,8 @@ metrics:
- F1Score
- AUROC
threshold:
image_default: 0
adaptive: true
method: adaptive #options: [adaptive, manual]
manual_image: null

visualization:
show_images: False # show images on the screen
Expand Down
4 changes: 2 additions & 2 deletions anomalib/models/dfm/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -32,8 +32,8 @@ metrics:
- F1Score
- AUROC
threshold:
image_default: 0
adaptive: true
method: adaptive #options: [adaptive, manual]
manual_image: null

visualization:
show_images: False # show images on the screen
Expand Down
6 changes: 3 additions & 3 deletions anomalib/models/draem/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -40,9 +40,9 @@ metrics:
- F1Score
- AUROC
threshold:
image_default: 3
pixel_default: 3
adaptive: true
method: adaptive #options: [adaptive, manual]
manual_image: null
manual_pixel: null

visualization:
show_images: False # show images on the screen
Expand Down
6 changes: 3 additions & 3 deletions anomalib/models/fastflow/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -43,9 +43,9 @@ metrics:
- F1Score
- AUROC
threshold:
image_default: 0
pixel_default: 0
adaptive: true
method: adaptive #options: [adaptive, manual]
manual_image: null
manual_pixel: null

visualization:
show_images: False # show images on the screen
Expand Down
4 changes: 2 additions & 2 deletions anomalib/models/ganomaly/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -44,8 +44,8 @@ metrics:
- F1Score
- AUROC
threshold:
image_default: 0
adaptive: true
method: adaptive #options: [adaptive, manual]
manual_image: null

visualization:
show_images: False # show images on the screen
Expand Down
6 changes: 3 additions & 3 deletions anomalib/models/padim/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -38,9 +38,9 @@ metrics:
- F1Score
- AUROC
threshold:
image_default: 3
pixel_default: 3
adaptive: true
method: adaptive #options: [adaptive, manual]
manual_image: null
manual_pixel: null

visualization:
show_images: False # show images on the screen
Expand Down
6 changes: 3 additions & 3 deletions anomalib/models/patchcore/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -39,9 +39,9 @@ metrics:
- F1Score
- AUROC
threshold:
image_default: 0
pixel_default: 0
adaptive: true
method: adaptive #options: [adaptive, manual]
manual_image: null
manual_pixel: null

visualization:
show_images: False # show images on the screen
Expand Down
6 changes: 3 additions & 3 deletions anomalib/models/reverse_distillation/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -47,9 +47,9 @@ metrics:
- F1Score
- AUROC
threshold:
image_default: 0
pixel_default: 0
adaptive: true
method: adaptive #options: [adaptive, manual]
manual_image: null
manual_pixel: null

visualization:
show_images: False # show images on the screen
Expand Down
6 changes: 3 additions & 3 deletions anomalib/models/stfpm/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -45,9 +45,9 @@ metrics:
- F1Score
- AUROC
threshold:
image_default: 0
pixel_default: 0
adaptive: true
method: adaptive #options: [adaptive, manual]
manual_image: null
manual_pixel: null

visualization:
show_images: False # show images on the screen
Expand Down
4 changes: 4 additions & 0 deletions anomalib/post_processing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,9 @@
# Copyright (C) 2022 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

from .normalization import NormalizationMethod
from .post_process import (
ThresholdMethod,
add_anomalous_label,
add_normal_label,
anomaly_map_to_color_map,
Expand All @@ -19,5 +21,7 @@
"superimpose_anomaly_map",
"compute_mask",
"ImageResult",
"NormalizationMethod",
"Visualizer",
"ThresholdMethod",
]
10 changes: 10 additions & 0 deletions anomalib/post_processing/normalization/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,3 +2,13 @@

# Copyright (C) 2022 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

from enum import Enum


class NormalizationMethod(str, Enum):
"""Normalization method for normalization."""

CDF = "cdf"
MIN_MAX = "min_max"
NONE = "none"
8 changes: 8 additions & 0 deletions anomalib/post_processing/post_process.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,13 +5,21 @@


import math
from enum import Enum
from typing import Optional, Tuple

import cv2
import numpy as np
from skimage import morphology


class ThresholdMethod(str, Enum):
"""Threshold method to apply post-processing to the output predictions."""

ADAPTIVE = "adaptive"
MANUAL = "manual"


def add_label(
image: np.ndarray,
label_name: str,
Expand Down
10 changes: 5 additions & 5 deletions anomalib/utils/callbacks/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,15 +69,15 @@ def get_callbacks(config: Union[ListConfig, DictConfig]) -> List[Callback]:

# Add post-processing configurations to AnomalyModule.
image_threshold = (
config.metrics.threshold.image_default if "image_default" in config.metrics.threshold.keys() else None
config.metrics.threshold.manual_image if "manual_image" in config.metrics.threshold.keys() else None
)
pixel_threshold = (
config.metrics.threshold.pixel_default if "pixel_default" in config.metrics.threshold.keys() else None
config.metrics.threshold.manual_pixel if "manual_pixel" in config.metrics.threshold.keys() else None
)
post_processing_callback = PostProcessingConfigurationCallback(
adaptive_threshold=config.metrics.threshold.adaptive,
default_image_threshold=image_threshold,
default_pixel_threshold=pixel_threshold,
threshold_method=config.metrics.threshold.method,
manual_image_threshold=image_threshold,
manual_pixel_threshold=pixel_threshold,
)
callbacks.append(post_processing_callback)

Expand Down
49 changes: 31 additions & 18 deletions anomalib/utils/callbacks/post_processing_configuration.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from pytorch_lightning.utilities.cli import CALLBACK_REGISTRY

from anomalib.models.components.base.anomaly_module import AnomalyModule
from anomalib.post_processing import NormalizationMethod, ThresholdMethod

logger = logging.getLogger(__name__)

Expand All @@ -23,29 +24,41 @@ class PostProcessingConfigurationCallback(Callback):
"""Post-Processing Configuration Callback.
Args:
normalization_method(Optional[str]): Normalization method. <None, min_max, cdf>
adaptive_threshold (bool): Flag indicating whether threshold should be adaptive.
default_image_threshold (Optional[float]): Default image threshold value.
default_pixel_threshold (Optional[float]): Default pixel threshold value.
normalization_method(NormalizationMethod): Normalization method. <none, min_max, cdf>
threshold_method (ThresholdMethod): Flag indicating whether threshold should be manual or adaptive.
manual_image_threshold (Optional[float]): Default manual image threshold value.
manual_pixel_threshold (Optional[float]): Default manual pixel threshold value.
"""

def __init__(
self,
normalization_method: str = "min_max",
adaptive_threshold: bool = True,
default_image_threshold: Optional[float] = None,
default_pixel_threshold: Optional[float] = None,
normalization_method: NormalizationMethod = NormalizationMethod.MIN_MAX,
threshold_method: ThresholdMethod = ThresholdMethod.ADAPTIVE,
manual_image_threshold: Optional[float] = None,
manual_pixel_threshold: Optional[float] = None,
) -> None:
super().__init__()
self.normalization_method = normalization_method

assert (
adaptive_threshold or default_image_threshold is not None and default_pixel_threshold is not None
), "Default thresholds must be specified when adaptive threshold is disabled."
if threshold_method == ThresholdMethod.ADAPTIVE and all(
i is not None for i in [manual_image_threshold, manual_pixel_threshold]
):
raise ValueError(
"When `threshold_method` is set to `adaptive`, `manual_image_threshold` and `manual_pixel_threshold` "
"must not be set."
)

self.adaptive_threshold = adaptive_threshold
self.default_image_threshold = default_image_threshold
self.default_pixel_threshold = default_pixel_threshold
if threshold_method == ThresholdMethod.MANUAL and all(
i is None for i in [manual_image_threshold, manual_pixel_threshold]
):
raise ValueError(
"When `threshold_method` is set to `manual`, `manual_image_threshold` and `manual_pixel_threshold` "
"must be set."
)

self.threshold_method = threshold_method
self.manual_image_threshold = manual_image_threshold
self.manual_pixel_threshold = manual_pixel_threshold

# pylint: disable=unused-argument
def setup(self, trainer: Trainer, pl_module: LightningModule, stage: Optional[str] = None) -> None:
Expand All @@ -57,7 +70,7 @@ def setup(self, trainer: Trainer, pl_module: LightningModule, stage: Optional[st
stage (Optional[str], optional): fit, validate, test or predict. Defaults to None.
"""
if isinstance(pl_module, AnomalyModule):
pl_module.adaptive_threshold = self.adaptive_threshold
if pl_module.adaptive_threshold is False:
pl_module.image_threshold.value = torch.tensor(self.default_image_threshold).cpu()
pl_module.pixel_threshold.value = torch.tensor(self.default_pixel_threshold).cpu()
pl_module.threshold_method = self.threshold_method
if pl_module.threshold_method == ThresholdMethod.MANUAL:
pl_module.image_threshold.value = torch.tensor(self.manual_image_threshold).cpu()
pl_module.pixel_threshold.value = torch.tensor(self.manual_pixel_threshold).cpu()
6 changes: 3 additions & 3 deletions anomalib/utils/cli/cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,9 +109,9 @@ def add_arguments_to_parser(self, parser: LightningArgumentParser) -> None:
parser.set_defaults(
{
"post_processing.normalization_method": "min_max",
"post_processing.adaptive_threshold": True,
"post_processing.default_image_threshold": None,
"post_processing.default_pixel_threshold": None,
"post_processing.threshold_method": "adaptive",
"post_processing.manual_image_threshold": None,
"post_processing.manual_pixel_threshold": None,
}
)

Expand Down
4 changes: 2 additions & 2 deletions anomalib/utils/metrics/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,8 @@
import torchmetrics
from omegaconf import DictConfig, ListConfig

from .adaptive_threshold import AdaptiveThreshold
from .anomaly_score_distribution import AnomalyScoreDistribution
from .anomaly_score_threshold import AnomalyScoreThreshold
from .aupr import AUPR
from .aupro import AUPRO
from .auroc import AUROC
Expand All @@ -20,7 +20,7 @@
from .optimal_f1 import OptimalF1
from .pro import PRO

__all__ = ["AUROC", "AUPR", "AUPRO", "OptimalF1", "AdaptiveThreshold", "AnomalyScoreDistribution", "MinMax", "PRO"]
__all__ = ["AUROC", "AUPR", "AUPRO", "OptimalF1", "AnomalyScoreThreshold", "AnomalyScoreDistribution", "MinMax", "PRO"]


def get_metrics(config: Union[ListConfig, DictConfig]) -> Tuple[AnomalibMetricCollection, AnomalibMetricCollection]:
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
"""Implementation of Optimal F1 score based on TorchMetrics."""
"""Implementation of AnomalyScoreThreshold based on TorchMetrics."""

# Copyright (C) 2022 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
Expand All @@ -7,11 +7,16 @@
from torchmetrics import PrecisionRecallCurve


class AdaptiveThreshold(PrecisionRecallCurve):
"""Optimal F1 Metric.
class AnomalyScoreThreshold(PrecisionRecallCurve):
"""Anomaly Score Threshold.
Compute the optimal F1 score at the adaptive threshold, based on the F1 metric of the true labels and the
predicted anomaly scores.
This class computes/stores the threshold that determines the anomalous label
given anomaly scores. If the threshold method is ``manual``, the class only
stores the manual threshold values.
If the threshold method is ``adaptive``, the class initially computes the
adaptive threshold to find the optimal f1_score and stores the computed
adaptive threshold value.
"""

def __init__(self, default_value: float = 0.5, **kwargs):
Expand Down
Loading

0 comments on commit dacf3f4

Please sign in to comment.