Skip to content
forked from Lee-zix/CEN

This is the official code release of the following paper: Zixuan Li, Saiping Guan, Xiaolong Jin, Weihua Peng, Yajuan Lyu , Yong Zhu, Long Bai, Wei Li, Jiafeng Guo, Xueqi Cheng . Complex Evolutional Pattern Learning for Temporal Knowledge Graph Reasoning. ACL 2022.

License

Notifications You must be signed in to change notification settings

nec-research/CEN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Complex Evolutional Pattern Learning for Temporal Knowledge Graph Reasoning

This is the official code release of the following paper:

Zixuan Li, Saiping Guan, Xiaolong Jin, Weihua Peng, Yajuan Lyu , Yong Zhu, Long Bai, Wei Li, Jiafeng Guo, Xueqi Cheng. Complex Evolutional Pattern Learning for Temporal Knowledge Graph Reasoning. ACL 2022.

cen_architecture

online_architecture

Quick Start

Environment variables & dependencies

conda create -n cen python=3.7

conda activate cen

pip install -r requirement.txt

Download and Process data

The dataset files can be found in the project of our SIGIR 2021 paper "Temporal Knowledge Graph Reasoning Based on Evolutional Representation Learning"(RE-GCN).

First, unzip and unpack the data files,

tar -zxvf data-release.tar.gz

Offline Training with Curriculum Learing

Then the following commands can be used to train the offline models.

  1. Pretrain models with the minimum length.
cd src
python main.py --dilate-len 1 --n-epochs 30 --lr 0.001 --n-layers 2 --evaluate-every 1 --n-hidden 200 --self-loop --decoder convtranse --encoder uvrgcn --layer-norm  --entity-prediction --gpu 1 -d ICEWS14s --start-history-len 3 --train-history-len 10 --test-history-len 10 --test -1  --ft_lr=0.001 --norm_weight 1
  1. Curriculum Training.
python main.py --dilate-len 1 --n-epochs 30 --lr 0.001 --n-layers 2 --evaluate-every 1 --n-hidden 200 --self-loop --decoder convtranse --encoder uvrgcn --layer-norm  --entity-prediction --gpu 1 -d ICEWS14s --start-history-len 3 --train-history-len 10 --test-history-len 10 --test 0  --ft_lr=0.001 --norm_weight 1

Evaluate the offline models

To generate the evaluation results of a offline model, set the --test to 1 (for valid set) or 2 (for test set) and the --test-history-len to k (k is the optimal length of history when the MRR metric decreases in the valid set or the length is up to maximum length K) in the commands above.

For example

python main.py --dilate-len 1 --n-epochs 30 --lr 0.001 --n-layers 2 --evaluate-every 1 --n-hidden 200 --self-loop --decoder convtranse --encoder uvrgcn --layer-norm  --entity-prediction --gpu 1 -d ICEWS14s --start-history-len 3 --train-history-len 10 --test-history-len k --test 2  --ft_lr=0.001 --norm_weight 1

Online training data

First, train the models with timestamps in the valid set

python main.py --dilate-len 1 --n-epochs 30 --lr 0.001 --n-layers 2 --evaluate-every 1 --n-hidden 200 --self-loop --decoder convtranse --encoder uvrgcn --layer-norm  --entity-prediction --gpu 1 -d ICEWS14s --start-history-len 3 --train-history-len 10 --test-history-len k --test 3  --ft_lr=0.001 --norm_weight 1

Then, train the models with timestamps in the test set

python main.py --dilate-len 1 --n-epochs 30 --lr 0.001 --n-layers 2 --evaluate-every 1 --n-hidden 200 --self-loop --decoder convtranse --encoder uvrgcn --layer-norm  --entity-prediction --gpu 1 -d ICEWS14s --start-history-len 3 --train-history-len 10 --test-history-len k --test 4  --ft_lr=0.001 --norm_weight 1

Change the hyperparameters

To get the optimal result reported in the paper, change the hyperparameters and other experiment set up according to Section 5 in the paper (https://arxiv.org/pdf/2203.07782.pdf).

Citation

If you find the resource in this repository helpful, please cite

@inproceedings{li-etal-2022-complex,
    title = "Complex Evolutional Pattern Learning for Temporal Knowledge Graph Reasoning",
    author = "Li, Zixuan  and
      Guan, Saiping  and
      Jin, Xiaolong  and
      Peng, Weihua  and
      Lyu, Yajuan  and
      Zhu, Yong  and
      Bai, Long  and
      Li, Wei  and
      Guo, Jiafeng  and
      Cheng, Xueqi",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
    month = may,
    year = "2022",
    address = "Dublin, Ireland",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.acl-short.32",
    doi = "10.18653/v1/2022.acl-short.32",
    pages = "290--296"
}

About

This is the official code release of the following paper: Zixuan Li, Saiping Guan, Xiaolong Jin, Weihua Peng, Yajuan Lyu , Yong Zhu, Long Bai, Wei Li, Jiafeng Guo, Xueqi Cheng . Complex Evolutional Pattern Learning for Temporal Knowledge Graph Reasoning. ACL 2022.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%