The SDK for instrumenting applications for tracking AI costs.
To set up the code quality checks for this project:
- Clone the repository
- Run the setup command to install the necessary requirements, including Poetry for handling dependencies
make setup
The code formatting and linting checks help maintain consistent style and identify potential issues. Black and Ruff are automatically invoked with each commit, but they can also be utilized independently without committing changes:
- To display the issues detected by the linter
make lint
- To automatically apply the formatter changes and the suggested changes by the linter, use the following command
make lint-fix
- OpenAI
- Azure OpenAI
- Cohere
- Anthropic
- HuggingFace pipelines
- HuggingFace HUB
- LangChain
- LlamaIndex
- Amazon Bedrock
- Amazon SageMaker
- Google PALM API
- Google VertexAI
Make sure you initialize Nebuly before importing other libraries
like openai
, cohere
, huggingface
, etc.
In the simple case, you can just import nebuly and call the init function with your API key. This will automatically setup all the tracking for you. After that, you can call the other libraries as normal.
import os
import nebuly
api_key = os.getenv("NEBULY_API_KEY")
nebuly.init(api_key=api_key)
import os
from openai import OpenAI
client = OpenAI()
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": "Say this is a test",
}
],
model="gpt-3.5-turbo",
user_id="user-123",
feature_flags=["new-feature_flag"],
)
In the simple case, each call will be stored as a separate Interaction, you can use context managers to group more calls in a single Interaction:
import os
import nebuly
from nebuly.contextmanager import new_interaction
api_key = os.getenv("NEBULY_API_KEY")
nebuly.init(api_key=api_key)
# Setup OpenAI
import openai
openai.api_key = os.getenv("OPENAI_API_KEY")
# Setup Cohere
import cohere
co = cohere.Client(os.getenv("COHERE_API_KEY"))
with new_interaction(user_id="test_user", user_group_profile="test_group") as interaction:
# interaction.set_input("Some custom input")
# interaction.set_history([{"role": "user/assistant", "content": "sample content"}}])
completion_1 = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an helpful assistant"},
{"role": "user", "content": "Hello world"}
]
)
completion_2 = co.generate(
prompt='Please explain to me how LLMs work',
)
# interaction.set_output("Some custom output")
import os
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from nebuly.providers.langchain import LangChainTrackingHandler
callback = LangChainTrackingHandler(
user_id="test_user",
api_key=os.getenv("NEBULY_API_KEY"),
)
llm = ChatOpenAI(temperature=0.9)
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
chain = LLMChain(llm=llm, prompt=prompt)
result = chain.run(
"colorful socks",
callbacks=[callback],
)
import os
from nebuly.providers.llama_index import LlamaIndexTrackingHandler
handler = LlamaIndexTrackingHandler(
api_key=os.getenv("NEBULY_API_KEY"), user_id="test_user"
)
import llama_index
from llama_index import SimpleDirectoryReader, VectorStoreIndex
llama_index.global_handler = handler
documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
from nebuly.ab_testing import ABTesting
client = ABTesting("your_nebuly_api_key")
variants = client.get_variants(
user="<user_id>",
feature_flags=["feature_flag_a", "feature_flag_b"]
)
print(variants)