Skip to content

A curated list of Large Language Model resources, covering model training, serving, fine-tuning, and building LLM applications.

License

Notifications You must be signed in to change notification settings

nafisa17/LLM-engineer-handbook

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 

Repository files navigation

LLM-engineer-handbook

🔥 Large Language Models(LLM) have taken the NLP community AI community the Whole World by storm. The LLM space is complicated! This repo provides a curated list to help you navigate; it includes a collection of Large Language Model frameworks and tutorials, covering model training, serving, fine-tuning, and building LLM applications.

Table of Content

Applications

Build & Auto-optimize

  • AdalFlow - The library to build & auto-optimize LLM applications, from Chatbot, RAG, to Agent. It is AI-first with PyTorch-like design patterns.

  • dspy - DSPy: The framework for programming—not prompting—foundation models.

Build

  • LlamaIndex — A Python library for augmenting LLM apps with data.
  • LangChain — A popular Python/JavaScript library for chaining sequences of language model prompts.
  • Haystack - Python framework that allows you to build applications powered by LLMs

Prompt Optimization

  • AutoPrompt - A framework for prompt tuning using Intent-based Prompt Calibration
  • PromptFify - A library for prompt engineering that simplifies NLP tasks (e.g., NER, classification) using LLMs like GPT.

Others

  • LiteLLM - Python SDK, Proxy Server (LLM Gateway) to call 100+ LLM APIs in OpenAI format.

Pretraining

  • PyTorch - PyTorch is an open source machine learning library based on the Torch library, used for applications such as computer vision and natural language processing.
  • TensorFlow - TensorFlow is an open source machine learning library developed by Google.
  • JAX - Google’s library for high-performance computing and automatic differentiation.
  • tinygrad - A minimalistic deep learning library with a focus on simplicity and educational use, created by George Hotz.
  • micrograd - A simple, lightweight autograd engine for educational purposes, created by Andrej Karpathy.

Fine-tuning

  • Transformers - Hugging Face Transformers is a popular library for Natural Language Processing (NLP) tasks, including fine-tuning large language models.
  • Unsloth - Finetune Llama 3.2, Mistral, Phi-3.5 & Gemma 2-5x faster with 80% less memory!
  • LitGPT - 20+ high-performance LLMs with recipes to pretrain, finetune, and deploy at scale.

Serving

  • TorchServe - An open-source model serving library developed by AWS and Facebook specifically for PyTorch models, enabling scalable deployment, model versioning, and A/B testing.

  • TensorFlow Serving - A flexible, high-performance serving system for machine learning models, designed for production environments, and optimized for TensorFlow models but also supports other formats.

  • Ray Serve - Part of the Ray ecosystem, Ray Serve is a scalable model-serving library that supports deployment of machine learning models across multiple frameworks, with built-in support for Python-based APIs and model pipelines.

  • NVIDIA TensorRT-LLM - TensorRT-LLM is NVIDIA's compiler for transformer-based models (LLMs), providing state-of-the-art optimizations on NVIDIA GPUs.

  • NVIDIA Triton Inference Server - A high-performance inference server supporting multiple ML/DL frameworks (TensorFlow, PyTorch, ONNX, TensorRT etc.), optimized for NVIDIA GPU deployments, and ideal for both cloud and on-premises serving.

  • ollama - A lightweight, extensible framework for building and running large language models on the local machine.

  • llama.cpp - A library for running LLMs in pure C/C++. Supported architectures include (LLaMA, Falcon, Mistral, MoEs, phi and more)

  • TGI - HuggingFace's text-generation-inference toolkit for deploying and serving LLMs, built on top of Rust, Python and gRPC.

  • vllm - An optimized, high-throughput serving engine for large language models, designed to efficiently handle massive-scale inference with reduced latency.

  • sglang - SGLang is a fast serving framework for large language models and vision language models.

  • LitServe - LitServe is a lightning-fast serving engine for any AI model of any size. Flexible. Easy. Enterprise-scale.

Prompt Management

  • Opik - Opik is an open-source platform for evaluating, testing and monitoring LLM applications

Datasets

Use Cases

  • Datasets - A vast collection of ready-to-use datasets for machine learning tasks, including NLP, computer vision, and audio, with tools for easy access, filtering, and preprocessing.
  • Argilla - A UI tool for curating and reviewing datasets for LLM evaluation or training.
  • distilabel - A library for generating synthetic datasets with LLM APIs or models.

Fine-tuning

  • LLMDataHub - A quick guide (especially) for trending instruction finetuning datasets
  • LLM Datasets - High-quality datasets, tools, and concepts for LLM fine-tuning.

Pretraining

Benchmarks

  • lighteval - A library for evaluating local LLMs on major benchmarks and custom tasks.

  • evals - OpenAI's open sourced evaluation framework for LLMs and systems built with LLMs.

  • ragas - A library for evaluating and optimizing LLM applications, offering a rich set of eval metrics.

Agent

Understand LLM

Prompt Engineering

Reasoning & Planning

Learn LLM

Training

  • Chip's Blog - Chip Huyen's blog on training LLMs, including the latest research, tutorials, and best practices.
  • Lil'Log - Lilian Weng(OpenAI)'s blog on machine learning, deep learning, and AI, with a focus on LLMs and NLP.
  • Ahead of AI - Sebastian Raschka's Newsletter, covering end-to-end LLMs understanding.
  • Decoding ML - Content on building production GenAI, RecSys and MLOps applications.

Fundamentals

  • Intro to LLMs - A 1 hour general-audience introduction to Large Language Models by Andrej Karpathy.
  • Building GPT-2 from Scratch - A 4 hour deep dive into building GPT2 from scratch by Andrej Karpathy.

Books

Applications

General

Agent

  1. Lectures
  • LLM Agents MOOC - A playlist of 11 lectures by the Berkeley RDI Center on Decentralization & AI, featuring guest speakers like Yuandong Tian, Graham Neubig, Omar Khattab, and others, covering core topics on Large Language Model agents.
  1. Projects
  • OpenHands - Open source agents for developers by AllHands.
  • CAMEL - First LLM multi-agent framework and an open-source community dedicated to finding the scaling law of agents. by CAMEL-AI.
  • swarm - Educational framework exploring ergonomic, lightweight multi-agent orchestration. Managed by OpenAI Solution team.
  • AutoGen - A programming framework for agentic AI 🤖 by Microsoft.

Auto-optimization

  • TextGrad - Automatic ''Differentiation'' via Text -- using large language models to backpropagate textual gradients.

Social Accounts

Name Social Expertise
Chip Huyen LinkedIn AI Engineering & ML Systems
Damien Benveniste, PhD LinkedIn ML Systems & MLOps
Jim Fan LinkedIn LLM Agents & Robotics
Li Yin LinkedIn LLM Engineering & Author of AdalFlow
Paul Iusztin LinkedIn LLM Engineering & LLMOps
Armand Ruiz LinkedIn AI Engineering Director at IBM
Alex Razvant LinkedIn AI/ML Engineering
Pascal Biese LinkedIn LLM Papers Daily
Maxime Labonne LinkedIn LLM Fine-Tuning
Sebastian Raschka LinkedIn LLMs from Scratch

Community

Name Social Scope
AdalFlow Discord LLM Engineering, auto-prompts, and AdalFlow discussions&contributions

Contributing

This is an active repository and your contributions are always welcome!

I will keep some pull requests open if I'm not sure if they are not an instant fit for this repo, you could vote for them by adding 👍 to them.


If you have any question about this opinionated list, do not hesitate to contact Li Yin

About

A curated list of Large Language Model resources, covering model training, serving, fine-tuning, and building LLM applications.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published