Skip to content

Commit

Permalink
Use DocumenterCitations in the code, too
Browse files Browse the repository at this point in the history
  • Loading branch information
moble committed Aug 3, 2023
1 parent ab424e5 commit 6636e9e
Show file tree
Hide file tree
Showing 11 changed files with 191 additions and 178 deletions.
277 changes: 147 additions & 130 deletions docs/src/references.bib
Original file line number Diff line number Diff line change
@@ -1,162 +1,179 @@
@misc{Ajith_2007,
doi = {10.48550/arxiv.0709.0093},
url = {https://arxiv.org/abs/0709.0093},
author = {Ajith, P. and Boyle, M. and Brown, D. A. and Fairhurst, S. and Hannam, M. and
Hinder, I. and Husa, S. and Krishnan, B. and Mercer, R. A. and Ohme, F. and Ott,
C. D. and Read, J. S. and Santamaria, L. and Whelan, J. T.},
title = {Data formats for numerical relativity waves},
publisher = {arXiv},
year = 2007,
archivePrefix ="arXiv",
eprint = "0709.0093",
primaryClass = "gr-qc",
}

@article{Boyle_2016,
doi = {10.1063/1.4962723},
url = {https://doi.org/10.1063/1.4962723},
year = 2016,
month = {sep},
publisher = {{AIP} Publishing},
volume = {57},
number = {9},
author = {Michael Boyle},
title = {How should spin-weighted spherical functions be defined?},
journal = {Journal of Mathematical Physics},
archivePrefix = "arXiv",
eprint = "1604.08140",
primaryClass = "gr-qc",
doi = {10.1063/1.4962723},
url = {https://doi.org/10.1063/1.4962723},
year = 2016,
month = {sep},
publisher = {{AIP} Publishing},
volume = 57,
number = 9,
author = {Michael Boyle},
title = {How should spin-weighted spherical functions be defined?},
journal = {Journal of Mathematical Physics},
archivePrefix ="arXiv",
eprint = "1604.08140",
primaryClass = "gr-qc",
}

@article{Elahi_2018,
doi = {10.1109/lsp.2018.2865676},
url = {https://doi.org/10.1109/lsp.2018.2865676},
year = 2018,
month = {oct},
publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
volume = {25},
number = {10},
pages = {1470--1474},
author = {Usama Elahi and Zubair Khalid and Rodney A. Kennedy and Jason D. McEwen},
title = {An Optimal-Dimensionality Sampling for Spin-$s$ Functions on the Sphere},
journal = {{IEEE} Signal Processing Letters},
archivePrefix = "arXiv",
eprint = "1809.01321",
primaryClass = "astro-ph.IM",
doi = {10.1109/lsp.2018.2865676},
url = {https://doi.org/10.1109/lsp.2018.2865676},
year = 2018,
month = {oct},
publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
volume = 25,
number = 10,
pages = {1470--1474},
author = {Usama Elahi and Zubair Khalid and Rodney A. Kennedy and Jason D. McEwen},
title = {An Optimal-Dimensionality Sampling for Spin-$s$ Functions on the Sphere},
journal = {{IEEE} Signal Processing Letters},
archivePrefix ="arXiv",
eprint = "1809.01321",
primaryClass = "astro-ph.IM",
}

@article{Fukushima_2011,
doi = {10.1007/s00190-011-0519-2},
url = {https://doi.org/10.1007/s00190-011-0519-2},
year = 2011,
month = {oct},
publisher = {Springer Science and Business Media {LLC}},
volume = {86},
number = {4},
pages = {271--285},
author = {Toshio Fukushima},
title = {Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers},
journal = {Journal of Geodesy}
doi = {10.1007/s00190-011-0519-2},
url = {https://doi.org/10.1007/s00190-011-0519-2},
year = 2011,
month = {oct},
publisher = {Springer Science and Business Media {LLC}},
volume = 86,
number = 4,
pages = {271--285},
author = {Toshio Fukushima},
title = {Numerical computation of spherical harmonics of arbitrary degree and order by
extending exponent of floating point numbers},
journal = {Journal of Geodesy}
}

@incollection{Gumerov_2015,
doi = {10.1007/978-3-319-13230-3_5},
url = {https://doi.org/10.1007/978-3-319-13230-3_5},
year = 2015,
publisher = {Springer International Publishing},
pages = {105--141},
author = {Nail A. Gumerov and Ramani Duraiswami},
title = {Recursive Computation of Spherical Harmonic Rotation Coefficients of Large Degree},
booktitle = {Excursions in Harmonic Analysis, Volume 3},
archivePrefix = "arXiv",
eprint = "1403.7698",
primaryClass = "math.NA",
doi = {10.1007/978-3-319-13230-3_5},
url = {https://doi.org/10.1007/978-3-319-13230-3_5},
year = 2015,
publisher = {Springer International Publishing},
pages = {105--141},
author = {Nail A. Gumerov and Ramani Duraiswami},
title = {Recursive Computation of Spherical Harmonic Rotation Coefficients of Large Degree},
booktitle = {Excursions in Harmonic Analysis, Volume 3},
archivePrefix ="arXiv",
eprint = "1403.7698",
primaryClass = "math.NA",
}

@article{Holmes_2002,
doi = {10.1007/s00190-002-0216-2},
url = {https://doi.org/10.1007/s00190-002-0216-2},
year = 2002,
month = {may},
publisher = {Springer Science and Business Media {LLC}},
volume = {76},
number = {5},
pages = {279--299},
author = {S. A. Holmes and W. E. Featherstone},
title = {A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions},
journal = {Journal of Geodesy}
doi = {10.1007/s00190-002-0216-2},
url = {https://doi.org/10.1007/s00190-002-0216-2},
year = 2002,
month = {may},
publisher = {Springer Science and Business Media {LLC}},
volume = 76,
number = 5,
pages = {279--299},
author = {S. A. Holmes and W. E. Featherstone},
title = {A unified approach to the Clenshaw summation and the recursive computation of very
high degree and order normalised associated Legendre functions},
journal = {Journal of Geodesy}
}

@article{Kostelec_2008,
doi = {10.1007/s00041-008-9013-5},
url = {https://doi.org/10.1007/s00041-008-9013-5},
year = 2008,
month = {feb},
publisher = {Springer Science and Business Media {LLC}},
volume = {14},
number = {2},
pages = {145--179},
author = {Peter J. Kostelec and Daniel N. Rockmore},
title = {{FFTs} on the Rotation Group},
journal = {Journal of Fourier Analysis and Applications}
doi = {10.1007/s00041-008-9013-5},
url = {https://doi.org/10.1007/s00041-008-9013-5},
year = 2008,
month = {feb},
publisher = {Springer Science and Business Media {LLC}},
volume = 14,
number = 2,
pages = {145--179},
author = {Peter J. Kostelec and Daniel N. Rockmore},
title = {{FFTs} on the Rotation Group},
journal = {Journal of Fourier Analysis and Applications}
}

@article{McEwen_2011,
doi = {10.1109/tsp.2011.2166394},
url = {https://doi.org/10.1109/tsp.2011.2166394},
year = 2011,
month = {dec},
publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
volume = {59},
number = {12},
pages = {5876--5887},
author = {Jason D. McEwen and Yves Wiaux},
title = {A Novel Sampling Theorem on the Sphere},
journal = {{IEEE} Transactions on Signal Processing},
archivePrefix = "arXiv",
eprint = "1110.6298",
primaryClass = "cs.IT",
doi = {10.1109/tsp.2011.2166394},
url = {https://doi.org/10.1109/tsp.2011.2166394},
year = 2011,
month = {dec},
publisher = {Institute of Electrical and Electronics Engineers ({IEEE})},
volume = 59,
number = 12,
pages = {5876--5887},
author = {Jason D. McEwen and Yves Wiaux},
title = {A Novel Sampling Theorem on the Sphere},
journal = {{IEEE} Transactions on Signal Processing},
archivePrefix ="arXiv",
eprint = "1110.6298",
primaryClass = "cs.IT",
}

@article{Newman_1966,
doi = {10.1063/1.1931221},
url = {https://doi.org/10.1063/1.1931221},
year = 1966,
month = {may},
publisher = {{AIP} Publishing},
volume = {7},
number = {5},
pages = {863--870},
author = {E. T. Newman and R. Penrose},
title = {Note on the Bondi-Metzner-Sachs Group},
journal = {Journal of Mathematical Physics}
doi = {10.1063/1.1931221},
url = {https://doi.org/10.1063/1.1931221},
year = 1966,
month = {may},
publisher = {{AIP} Publishing},
volume = 7,
number = 5,
pages = {863--870},
author = {E. T. Newman and R. Penrose},
title = {Note on the Bondi-Metzner-Sachs Group},
journal = {Journal of Mathematical Physics}
}

@article{Reinecke_2013,
doi = {10.1051/0004-6361/201321494},
url = {https://doi.org/10.1051/0004-6361/201321494},
year = 2013,
month = {jun},
publisher = {{EDP} Sciences},
volume = {554},
pages = {A112},
author = {M. Reinecke and D. S. Seljebotn},
title = {Libsharp---spherical harmonic transforms revisited},
journal = {Astronomy \& Astrophysics},
archivePrefix = "arXiv",
eprint = "1303.4945",
primaryClass = "physics.comp-ph",
doi = {10.1051/0004-6361/201321494},
url = {https://doi.org/10.1051/0004-6361/201321494},
year = 2013,
month = {jun},
publisher = {{EDP} Sciences},
volume = 554,
pages = {A112},
author = {M. Reinecke and D. S. Seljebotn},
title = {Libsharp---spherical harmonic transforms revisited},
journal = {Astronomy \& Astrophysics},
archivePrefix ="arXiv",
eprint = "1303.4945",
primaryClass = "physics.comp-ph",
}

@article{Waldvogel_2006,
doi = {10.1007/s10543-006-0045-4},
url = {https://doi.org/10.1007/s10543-006-0045-4},
year = 2006,
month = {mar},
publisher = {Springer Science and Business Media {LLC}},
volume = {46},
number = {1},
pages = {195--202},
author = {Jörg Waldvogel},
title = {Fast Construction of the Fej{\'{e}}r and Clenshaw--Curtis Quadrature Rules},
journal = {{BIT} Numerical Mathematics}
doi = {10.1007/s10543-006-0045-4},
url = {https://doi.org/10.1007/s10543-006-0045-4},
year = 2006,
month = {mar},
publisher = {Springer Science and Business Media {LLC}},
volume = 46,
number = 1,
pages = {195--202},
author = {Jörg Waldvogel},
title = {Fast Construction of the Fej{\'{e}}r and Clenshaw--Curtis Quadrature Rules},
journal = {{BIT} Numerical Mathematics}
}

@article{Xing_2019,
doi = {10.1007/s00190-019-01331-0},
url = {https://doi.org/10.1007/s00190-019-01331-0},
year = 2019,
month = {dec},
publisher = {Springer Science and Business Media {LLC}},
volume = {94},
number = {1},
author = {Zhibin Xing and Shanshan Li and Miao Tian and Diao Fan and Chi Zhang},
title = {Numerical experiments on column-wise recurrence formula to compute fully normalized associated Legendre functions of ultra-high degree and order},
journal = {Journal of Geodesy}
doi = {10.1007/s00190-019-01331-0},
url = {https://doi.org/10.1007/s00190-019-01331-0},
year = 2019,
month = {dec},
publisher = {Springer Science and Business Media {LLC}},
volume = 94,
number = 1,
author = {Zhibin Xing and Shanshan Li and Miao Tian and Diao Fan and Chi Zhang},
title = {Numerical experiments on column-wise recurrence formula to compute fully
normalized associated Legendre functions of ultra-high degree and order},
journal = {Journal of Geodesy}
}
3 changes: 1 addition & 2 deletions src/Hrecursion.jl
Original file line number Diff line number Diff line change
Expand Up @@ -29,8 +29,7 @@ end
H!(H, expiβ, ℓₘₐₓ, m′ₘₐₓ, H_rec_coeffs)
H!(H, expiβ, ℓₘₐₓ, m′ₘₐₓ, H_rec_coeffs, Hindex)
Compute the ``H`` matrix defined by [Gumerov and
Duraiswami](https://arxiv.org/abs/1403.7698).
Compute the ``H`` matrix defined by [Gumerov_2015](@citet).
This computation forms the basis for computing Wigner's ``d`` and ``𝔇``
matrices via [`d!`](@ref) and [`D!`](@ref), the spin-weighted spherical
Expand Down
4 changes: 2 additions & 2 deletions src/associated_legendre.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
### The code in this module is based on a paper by Xing et al.:
### https://doi.org/10.1007/s00190-019-01331-0. All references to equation numbers are for that
### paper.
### https://doi.org/10.1007/s00190-019-01331-0 [Xing_2019](@cite). All references to equation
### numbers are for that paper.


# These functions implement Eqs. (13), absorbing a factor of 1/2 into b, and converting to the
Expand Down
12 changes: 6 additions & 6 deletions src/iterators.jl
Original file line number Diff line number Diff line change
Expand Up @@ -187,15 +187,15 @@ Base.size(Yi::Yiterator, dim) = dim > 1 ? 1 : length(Yi)



# # Eq. (10) of Reinecke & Seljebotn https://dx.doi.org/10.1051/0004-6361/201321494
# # Eq. (10) of [Reinecke & Seljebotn](@cite Reinecke_2013)
# ₛλₗₘ(ϑ) = (-1)ᵐ √((2ℓ+1)/(4π)) dˡ₋ₘₛ(ϑ)
#
# # Eq. (4.11) of Kostelec & Rockmore https://dx.doi.org/10.1007/s00041-008-9013-5
# # Eq. (4.11) of [Kostelec & Rockmore](@cite Kostelec_2008)
# # Note that terms with out-of-range indices should be treated as 0.
# ₛλₗ₊₁ₘ = √((2ℓ+3)/(2ℓ+1)) (ℓ+1) (2ℓ+1) / √(((ℓ+1)²-m²) ((ℓ+1)²-s²)) (cosϑ + ms/(ℓ(ℓ+1))) ₛλₗₘ
# - √((2ℓ+3)/(2ℓ-1)) (ℓ+1) (2ℓ+1) √((ℓ-m²) (ℓ-s²)) / √(((ℓ+1)²-m²) ((ℓ+1)²-s²)) ((ℓ+1)/ℓ) ₛλₗ₋₁ₘ
#
# # Eqs. (4.7) and (4.6) of Kostelec & Rockmore
# # Eqs. (4.7) and (4.6) of [Kostelec & Rockmore](@cite Kostelec_2008)
# for 0 ≤ s ≤ ℓ
# ₛλₗₗ(ϑ) = (-1)ᵐ √((2ℓ+1)/(4π)) √(((2ℓ)!)/((ℓ+s)!(ℓ-s)!)) cosˡ⁻ˢ ϑ/2 sinˡ⁺ˢ ϑ/2
# ₛλₗ₋ₗ(ϑ) = (-1)ᵐ⁺ˡ⁺ˢ √((2ℓ+1)/(4π)) √(((2ℓ)!)/((ℓ+s)!(ℓ-s)!)) cosˡ⁺ˢ ϑ/2 sinˡ⁻ˢ ϑ/2
Expand All @@ -213,8 +213,8 @@ Base.size(Yi::Yiterator, dim) = dim > 1 ? 1 : length(Yi)
This provides initial values for the recursion to find
``{}_{s}\lambda_{\ell,m}`` along indices of increasing ``\ell``, due to
[Kostelec & Rockmore](https://dx.doi.org/10.1007/s00041-008-9013-5).
Specifically, this function computes values with ``\ell=m``.
[Kostelec & Rockmore](@cite Kostelec_2008) Specifically, this function computes
values with ``\ell=m``.
```math
{}_{s}\lambda_{\ell,m}(\theta)
Expand Down Expand Up @@ -260,7 +260,7 @@ The ``ₛλₗₘ(θ)`` function is defined as the spin-weighted spherical harmo
spherical coordinates ``(θ, ϕ)``, with ``ϕ=0``. In particular, note that it is real-valued.
The return type is determined by the type of `θ` (or more precisely, cos½θ).
This algorithm by [Kostelec & Rockmore](https://dx.doi.org/10.1007/s00041-008-9013-5) allows
This algorithm by [Kostelec & Rockmore](@cite Kostelec_2008) allows
us to iterate over increasing ``ℓ`` values, for given fixed ``s`` and ``m`` values.
Note that this iteration has no inherent bound, so if you try to iterate over all values,
Expand Down
4 changes: 2 additions & 2 deletions src/map2salm.jl
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,8 @@ is more efficient to pre-compute `plan` using [`plan_map2salm`](@ref). These
functions will create a new `salm` array on each call. To operate in place on
a pre-allocated `salm` array, use [`map2salm!`](@ref).
The core of this function follows the method described by [Reinecke and
Seljebotn](https://dx.doi.org/10.1051/0004-6361/201321494).
The core of this function follows the method described by [Reinecke and Seljebotn](@cite
Reinecke_2013).
"""
function map2salm(map::AbstractArray{Complex{T}}, spin::Int, ℓmax::Int, show_progress=false) where {T<:Real}
Expand Down
Loading

0 comments on commit 6636e9e

Please sign in to comment.