Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

A couple of bug fixes #1945

Merged
merged 3 commits into from
Nov 14, 2024
Merged

A couple of bug fixes #1945

merged 3 commits into from
Nov 14, 2024

Conversation

gramalingam
Copy link
Collaborator

Fixes a couple of bugs that show up in GPT2 optimization.

Copy link

codecov bot commented Nov 14, 2024

❌ 14 Tests Failed:

Tests completed Failed Passed Skipped
14979 14 14965 2055
View the full list of 3 ❄️ flaky tests
tests.eager_mode_test.TestEagerModeArguments_0_reference_runtime::test_function_input_and_attribute_by_kwargs_out_of_order

Flake rate in main: 39.22% (Passed 7462 times, Failed 4816 times)

Stack Traces | 0.002s run time
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:91: in run
    res = self._run(x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:139: in _run
    res = (convert_from_ml_dtypes(res[0]),)
..../test_torch_nightly/lib/python3.12.../onnx/reference/custom_element_types.py:50: in convert_from_ml_dtypes
    return array.view(dtype=dtype)
E   ValueError: Changing the dtype of a 0d array is only supported if the itemsize is unchanged

The above exception was the direct cause of the following exception:
tests/eager_mode_test.py:115: in test_function_input_and_attribute_by_kwargs_out_of_order
    self.assertEqual(add_with_alpha(alpha=3.0, other=2.0, this=1.0), 7.0)
onnxscript/values.py:576: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:307: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
tests/eager_mode_test.py:59: in add_with_alpha
    other = op.Mul(other, alpha)
.../onnx_opset/_impl/opset14.py:696: in Mul
    return op(*self._prepare_inputs(schema, A, B))
onnxscript/values.py:304: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:524: in _eval
    result = session.run(None, session_run_input)
..../test_torch_nightly/lib/python3.12.../onnx/reference/reference_evaluator.py:599: in run
    outputs = node.run(*inputs, **linked_attributes)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:114: in run
    res = OpRunBinary.run(self, x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:93: in run
    raise TypeError(
E   TypeError: Issues with types <class 'numpy.ndarray'>, <class 'numpy.ndarray'> (binary operator 'Mul').
tests.eager_mode_test.TestEagerModeArguments_0_reference_runtime::test_function_attribute_by_positional_args

Flake rate in main: 39.22% (Passed 7462 times, Failed 4816 times)

Stack Traces | 0.002s run time
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:91: in run
    res = self._run(x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:139: in _run
    res = (convert_from_ml_dtypes(res[0]),)
..../test_torch_nightly/lib/python3.12.../onnx/reference/custom_element_types.py:50: in convert_from_ml_dtypes
    return array.view(dtype=dtype)
E   ValueError: Changing the dtype of a 0d array is only supported if the itemsize is unchanged

The above exception was the direct cause of the following exception:
tests/eager_mode_test.py:112: in test_function_attribute_by_positional_args
    self.assertEqual(add_with_alpha(1.0, 2.0, 3.0), 7.0)
onnxscript/values.py:576: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:307: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
tests/eager_mode_test.py:59: in add_with_alpha
    other = op.Mul(other, alpha)
.../onnx_opset/_impl/opset14.py:696: in Mul
    return op(*self._prepare_inputs(schema, A, B))
onnxscript/values.py:304: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:524: in _eval
    result = session.run(None, session_run_input)
..../test_torch_nightly/lib/python3.12.../onnx/reference/reference_evaluator.py:599: in run
    outputs = node.run(*inputs, **linked_attributes)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:114: in run
    res = OpRunBinary.run(self, x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:93: in run
    raise TypeError(
E   TypeError: Issues with types <class 'numpy.ndarray'>, <class 'numpy.ndarray'> (binary operator 'Mul').
tests.eager_mode_test.TestEagerModeArguments_0_reference_runtime::test_function_some_input_by_kwargs

Flake rate in main: 39.22% (Passed 7462 times, Failed 4816 times)

Stack Traces | 0.003s run time
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:91: in run
    res = self._run(x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:139: in _run
    res = (convert_from_ml_dtypes(res[0]),)
..../test_torch_nightly/lib/python3.12.../onnx/reference/custom_element_types.py:50: in convert_from_ml_dtypes
    return array.view(dtype=dtype)
E   ValueError: Changing the dtype of a 0d array is only supported if the itemsize is unchanged

The above exception was the direct cause of the following exception:
tests/eager_mode_test.py:106: in test_function_some_input_by_kwargs
    self.assertEqual(add_with_alpha(1.0, other=2.0), 3.0)
onnxscript/values.py:576: in __call__
    return evaluator.default().eval_function(self, args, kwargs)
onnxscript/evaluator.py:307: in eval_function
    result = function.function(*adapted_args, **adapted_kwargs)
tests/eager_mode_test.py:59: in add_with_alpha
    other = op.Mul(other, alpha)
.../onnx_opset/_impl/opset14.py:696: in Mul
    return op(*self._prepare_inputs(schema, A, B))
onnxscript/values.py:304: in __call__
    return evaluator.default().eval(schema, args, kwargs)
onnxscript/evaluator.py:194: in eval
    outputs = self._eval(schema, inputs, attributes, closure)
onnxscript/evaluator.py:524: in _eval
    result = session.run(None, session_run_input)
..../test_torch_nightly/lib/python3.12.../onnx/reference/reference_evaluator.py:599: in run
    outputs = node.run(*inputs, **linked_attributes)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:114: in run
    res = OpRunBinary.run(self, x, y)
..../test_torch_nightly/lib/python3.12.../reference/ops/_op.py:93: in run
    raise TypeError(
E   TypeError: Issues with types <class 'numpy.ndarray'>, <class 'numpy.ndarray'> (binary operator 'Mul').

To view more test analytics, go to the Test Analytics Dashboard
Got feedback? Let us know on Github


cloner = _CopyReplace(self, attributes, value_map, node.metadata_props, call_stack)
cloner = _CopyReplace(self, attributes, value_map, node.metadata_props, call_stack + [call_site_id])
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
cloner = _CopyReplace(self, attributes, value_map, node.metadata_props, call_stack + [call_site_id])
cloner = _CopyReplace(self, attributes, value_map, node.metadata_props, [*call_stack, call_site_id])

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is there a way to suppress/ignore this suggestion from ruff? It doesn't make sense to me. I don't see how the replacement can be more efficient? But it is clearly less readable (my personal opinion).

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I went ahead and changed it so that this can be merged, but it would be good to know if there is a mechanism to override and ignore such a warning. I think efficiency argument might hold true for more complicated concatenations involving more than a single concetnation, but don't see it making a difference in a single concatenation like here.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

To ignore, you can use # noqa: RUF005 or whatever ruff error code it is.

Personally I like the unpack syntax better. It seems clear especially when we are unpacking multiple Sequences. It also make it immediately clear that the argument is a list, instead of the reader having to know that call_stack is a list and thus list + list is support. This is also useful when, say, call_stack is an arbitrary sequence and may not have + defined and we can use the same syntax without having to ensure call_stack being a list.

Efficiency wise, this saves an additional list construction on [call_site_id], although practically the overhead should be trivial.

@gramalingam gramalingam enabled auto-merge (squash) November 14, 2024 21:07
@gramalingam gramalingam merged commit d81480b into main Nov 14, 2024
20 of 39 checks passed
@gramalingam gramalingam deleted the rama/bugfix branch November 14, 2024 22:01
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
Development

Successfully merging this pull request may close these issues.

2 participants