Skip to content

Analysis of Embeddings and Transformers for fake news classification

Notifications You must be signed in to change notification settings

menbatisiunissart/fake_news_classification

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

fake_news_classification

This project conducts research on the "Performance Analysis of Different Word Embeddings and Transformers on Fake News Detection". In this research, we compare between Word2Vec, GloVe, and Elmo; and also between BERT, ALBERT, and DistilBERT. We adopt three phases, each focusing on a different analyses of fake news detection: Phase 1 emphasized on comparing the performances of different embedding layers and transformers in a general setting, Phase 2 attempted to observe the capabilities of representative models under low-resource settings, and Phase 3 explored the possibility of transfer learning through pretraining of these representative models.

This project is used for COMP4211: Machine Learning

About

Analysis of Embeddings and Transformers for fake news classification

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%