Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Euler spiral curve representation #169

Open
wants to merge 12 commits into
base: main
Choose a base branch
from
5 changes: 4 additions & 1 deletion Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ readme = "README.md"
categories = ["graphics"]

[package.metadata.docs.rs]
features = ["mint", "serde"]
features = ["mint", "serde", "euler"]

[dependencies]
arrayvec = "0.5.1"
Expand All @@ -28,3 +28,6 @@ features = ["derive"]
# This is used for research but not really needed; maybe refactor.
[dev-dependencies]
rand = "0.7.2"

[features]
euler = []
4 changes: 4 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,10 @@ Here we mention a few other curves libraries and touch on some of the decisions

Some code has been copied from lyon_geom with adaptation, thus the author of lyon_geom, Nicolas Silva, is credited in the [AUTHORS] file.

## Euler spirals

In addition to the Bézier functionality, kurbo also contains support for Euler spirals. Enable the `euler` feature to get these.

## More info

To learn more about Bézier curves, [A Primer on Bézier Curves] by Pomax is indispensable.
Expand Down
156 changes: 156 additions & 0 deletions benches/euler.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
// Copyright 2021 The kurbo Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Note: this `cfg` may not work, TODO either move to criterion or sort it out.
// I've been locally removing it to run benches.
#![cfg(nightly)]
#![feature(test)]
extern crate test;
use test::{black_box, Bencher};

use kurbo::*;

// About 15ns
#[bench]
fn bench_euler_integ(b: &mut Bencher) {
b.iter(|| integ_euler(black_box(0.1), black_box(0.2), 1e-9))
}

// About 21ns. This is evidence that computing this root directly as part of the
// error estimation would be very expensive, unless it could be constant folded.
#[bench]
fn bench_sixth_root(b: &mut Bencher) {
b.iter(|| black_box(0.1f64).powf(1.0 / 6.0))
}

// A lower order approximation to the main integral. The code is here
// if we want to use it, and might be a speedup if the workload consists
// of very low deflection segments (and/or the error threshold is high),
// but for general use any loss of branch prediction coherence would
// probably be a lose.
fn integ_euler_8(k0: f64, k1: f64) -> (f64, f64) {
let t1_1 = k0;
let t1_2 = 0.5 * k1;
let t2_2 = t1_1 * t1_1;
let t2_3 = 2. * (t1_1 * t1_2);
let t2_4 = t1_2 * t1_2;
let t3_4 = t2_2 * t1_2 + t2_3 * t1_1;
let t3_6 = t2_4 * t1_2;
let t4_4 = t2_2 * t2_2;
let t4_5 = 2. * (t2_2 * t2_3);
let t4_6 = 2. * (t2_2 * t2_4) + t2_3 * t2_3;
let t5_6 = t4_4 * t1_2 + t4_5 * t1_1;
let t6_6 = t4_4 * t2_2;
let mut u = 1.;
u -= (1. / 24.) * t2_2 + (1. / 160.) * t2_4;
u += (1. / 1920.) * t4_4 + (1. / 10752.) * t4_6;
u -= (1. / 322560.) * t6_6;
let mut v = (1. / 12.) * t1_2;
v -= (1. / 480.) * t3_4 + (1. / 2688.) * t3_6;
v += (1. / 53760.) * t5_6;
(u, v)
}

// About 4ns
#[bench]
fn bench_euler_integ_8(b: &mut Bencher) {
b.iter(|| integ_euler_8(black_box(0.1), black_box(0.2)))
}

// About 240ns
#[bench]
fn bench_fit_euler(b: &mut Bencher) {
b.iter(|| FitEulerResult::fit_euler(black_box(0.1), black_box(0.2)))
}

// Pretty much straight out of the notebook. Looking at the generated
// asm, the compiler does a good job
fn fast_fit_euler(th0: f64, th1: f64) -> f64 {
let k0 = th0 + th1;
let dth = th1 - th0;
let mut est = dth * 6.;
est += dth.powi(3) * (1. / -70.);
est += dth.powi(5) * (1. / -10780.);
est += dth.powi(7) * 2.769178184818219e-07;
est += dth * k0.powi(2) * (1. / -10.);
est += dth.powi(3) * k0.powi(2) * (1. / 4200.);
est += dth.powi(5) * k0.powi(2) * 1.6959677820260655e-05;
est += dth * k0.powi(4) * (1. / -1400.);
est += dth.powi(3) * k0.powi(4) * 6.84915970574303e-05;
est += dth * k0.powi(6) * -7.936475029053326e-06;
est
}

// Same as above but using mostly even powers. A small improvement.
fn fast_fit_euler2(th0: f64, th1: f64) -> f64 {
let k0 = th0 + th1;
let dth = th1 - th0;
let mut est = 6.;
est += dth.powi(2) * (1. / -70.);
est += dth.powi(4) * (1. / -10780.);
est += dth.powi(6) * 2.769178184818219e-07;
est += k0.powi(2) * (1. / -10.);
est += dth.powi(2) * k0.powi(2) * (1. / 4200.);
est += dth.powi(4) * k0.powi(2) * 1.6959677820260655e-05;
est += k0.powi(4) * (1. / -1400.);
est += dth.powi(2) * k0.powi(4) * 6.84915970574303e-05;
est += k0.powi(6) * -7.936475029053326e-06;
est * dth
}

// Compute both k1 and chord at the same time, which is what an
// actual implementation would use.
fn fast_fit_euler3(th0: f64, th1: f64) -> (f64, f64) {
let k0 = th0 + th1;
let dth = th1 - th0;
let mut k1 = 6.;
k1 += dth.powi(2) * (1. / -70.);
k1 += dth.powi(4) * (1. / -10780.);
k1 += dth.powi(6) * 2.769178184818219e-07;
k1 += k0.powi(2) * (1. / -10.);
k1 += dth.powi(2) * k0.powi(2) * (1. / 4200.);
k1 += dth.powi(4) * k0.powi(2) * 1.6959677820260655e-05;
k1 += k0.powi(4) * (1. / -1400.);
k1 += dth.powi(2) * k0.powi(4) * 6.84915970574303e-05;
k1 += k0.powi(6) * -7.936475029053326e-06;
let mut ch = 1.;
ch += dth.powi(2) * (1. / -40.);
ch += dth.powi(4) * 0.00034226190482569864;
ch += dth.powi(6) * -1.9349474568904524e-06;
ch += k0.powi(2) * (1. / -24.);
ch += dth.powi(2) * k0.powi(2) * 0.0024702380951963226;
ch += dth.powi(4) * k0.powi(2) * -3.7297408997537985e-05;
ch += k0.powi(4) * (1. / 1920.);
ch += dth.powi(2) * k0.powi(4) * -4.87350869747975e-05;
ch += k0.powi(6) * -3.1001936068463107e-06;
(k1 * dth, ch)
}

// About 3ns
#[bench]
fn bench_fast_fit_euler(b: &mut Bencher) {
b.iter(|| fast_fit_euler(black_box(0.1), black_box(0.2)))
}

// About 2ns
#[bench]
fn bench_fast_fit_euler2(b: &mut Bencher) {
b.iter(|| fast_fit_euler2(black_box(0.1), black_box(0.2)))
}

// About 7ns
#[bench]
fn bench_fast_fit_euler3(b: &mut Bencher) {
b.iter(|| fast_fit_euler3(black_box(0.1), black_box(0.2)))
}
Loading