Skip to content

kobybibas/CryoEM_rotation_invariant

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning Rotation Invariant Features for Cryogenic Electron Microscopy Images

Learning to seperate pose and staracture using GAN.

5HDB_gif

Setup

This is python3.6 and Pytorch based code. Dependencies:

# Using conda. If package installation fails it install with pip.
conda install --yes pip
conda config --add channels anaconda
conda config --add channels conda-forge
conda config --add channels pytorch
while read requirement; do conda install --yes $requirement || pip install $requirement; done < requirements.txt 
 
# Using pip
pip install -r requirements.txt 

Datasets

Datasets as tarballs are available from the links below.

Download and extract. Working directory stracture:

.
├── LICENSE
├── README.md
├── configs
│   └── vae_mnist.yaml
├── data
│   └── 5HDB
│   └── MNIST
├── externals
│   └── spatial_vae
├── models
├── output
├── requirements.txt
└── src

Usage

Training spatial-VAE model:

cd src
python main_train_vae.py --config_path=../configs/vae_mnist.yaml
python main_train_vae.py --config_path=../configs/vae_5hdb.yaml

configuration file is located here: ''configs/vae_mnist.yaml"

Training our approach

cd src
python main_train_ours.py --config_path=../configs/ours_mnist.yaml 
python main_train_ours.py --config_path=../configs/ours_5hdb.yaml

configuration file is located here: ''configs/ours_mnist.yaml"

Pretrained models:

https://drive.google.com/file/d/1HoFbyV8I8AwBNFtlURWzrwdzk1__Asmx/view?usp=sharing

Ablation experiments

The most basic method

python main_train_ours.py --config_path=../configs/ours_5hdb.yaml architecture=fc use_wasserstein=false 

Using DCGAN

python main_train_ours.py --config_path=../configs/ours_5hdb.yaml architecture=cnn use_wasserstein=false 

DCGAN + Wasserstein

python main_train_ours.py --config_path=../configs/ours_5hdb.yaml architecture=cnn use_wasserstein=true 

License

This source code is provided under the MIT License.

About

Source code for the paper

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 97.1%
  • Python 2.9%