My own version of labeling tool for YOLO format (support Multi Class labeling on the same image)
Main Program forked from puzzledqs/BBox-Label-Tool
Converter to Yolo format forked from [ManivannanMurugavel/YOLO-Annotation-Tool] (https://github.com/ManivannanMurugavel/YOLO-Annotation-Tool)
- Multi-class support
- Support .jpg and .png format
- Built in YOLO format converter
- Skip button to skip labeling on unwanted image
- Add Save and Load Checkpoint
- Remove class confirm button (set value directly from combobox)
- Add Convert to YOLO format button (no need to run external program)
- Load image using directory browser instead of user input
LabelTool
|
|--main.py # source code for the tool
|--Images/ # direcotry containing the images to be labeled
|--Sample/ # project/directory name
|--Result/ # direcotry for the labeling results
|--Sample/ # result txt according to project name
|--Result_YOLO/ # converted to YOLO format
A simple tool for labeling object bounding boxes in images, implemented with Python Tkinter.
python 2.7 win 32bit PIL-1.1.7.win32-py2.7
- For multi-class task, modify 'class.txt' with your own class-candidates and before labeling bbox, choose the 'Current Class' in the Combobox or by pressing 1-9 on your keyboard.
- run
python main.py
- click
LoadImage
, select a folder that contains list of images. - To create a new bounding box, left-click to select the first vertex. Moving the mouse to draw a rectangle, and left-click again to select the second vertex.
- To cancel the bounding box while drawing, just press Esc or s.
- To delete a existing bounding box, select it from the listbox, and click
Clear
or r. - To delete all existing bounding boxes in the image, simply click
ClearAll
.
- After finishing one image, click
Next
or d to advance. Likewise, clickPrev
or a to reverse. Or, input the index and clickGo
to navigate to an arbitrary image.- The labeling result will be saved in Labels/[folder name]/.. if and only if the 'Next' button is clicked.
- Checkpoint of last Image Number will be saved when 'Next' button is clicked.
- Click
Skip
if you want to skip unwanted image from directory and skip the annotation for that image (skipped image path will be saved in log/skip.txt) - Click
ConvertYOLO
button or to convert the labeling result to YOLO format. The result will be saved in Result_YOLO/[folder name]/..
Output
Result (bbox coodrdinates):
2
99 17 571 436 dog
733 60 988 320 cat
Result_YOLO (yolo format) :
0 0.279166666667 0.359523809524 0.393333333333 0.665079365079
1 0.717083333333 0.301587301587 0.2125 0.412698412698