# install vec2text
pip install --editable .
# install tevatron
cd tevatron
pip install --editable .
python3 vec2text/run.py \
--per_device_train_batch_size 512 \
--per_device_eval_batch_size 512 \
--max_seq_length 32 \
--model_name_or_path t5-base \
--dataset_name nq \
--embedder_model_name gtr_base_st \
--num_repeat_tokens 16 \
--embedder_no_grad True \
--num_train_epochs 50 \
--max_eval_samples 2000 \
--eval_steps 2000 \
--warmup_steps 10000 \
--bf16=1 \
--use_wandb=1 \
--use_frozen_embeddings_as_input True \
--experiment inversion \
--lr_scheduler_type constant_with_warmup \
--exp_group_name gtr_base_st \
--learning_rate 0.001 \
--output_dir ./saves/inversion/gtr_base_st \
--save_steps 2000
python3 vec2text/run.py \
--per_device_train_batch_size 512 \
--per_device_eval_batch_size 512 \
--max_seq_length 32 \
--model_name_or_path t5-base \
--dataset_name nq \
--embedder_model_name gtr_base_st \
--num_repeat_tokens 16 \
--embedder_no_grad True \
--num_train_epochs 50 \
--logging_steps 50 \
--max_eval_samples 2000 \
--eval_steps 2000 \
--warmup_steps 10000 \
--bf16=1 \
--use_wandb=1 \
--use_frozen_embeddings_as_input True \
--experiment corrector \
--lr_scheduler_type constant_with_warmup \
--exp_group_name gtr_base_st_corrector \
--learning_rate 0.001 \
--output_dir ./saves/corrector/gtr_base_st-corrector \
--save_steps 2000 \
--corrector_model_from_pretrained ./saves/inversion/gtr_base_st
We made our trained Vec2Text GTR-base model available at huggingface.
python3 eval_v2t.py \
--model_dir ./saves/corrector/gtr_base_st-corrector \
--batch_size 16 \
--steps 50 \
--beam_width 8
query_dir=embedings/query/nq/gtr-base-st/
corpus_dir=embedings/corpus/nq/gtr-base-st/
result_dir=dr_results/nq
mkdir -p ${query_dir}
mkdir -p ${corpus_dir}
mkdir -p ${result_dir}
# encode queries
python encode_gtr-base-st.py \
--output_dir=temp \
--model_name_or_path sentence-transformers/gtr-t5-base \
--bf16 \
--per_device_eval_batch_size 1024 \
--dataset_name Tevatron/wikipedia-nq/test \
--encoded_save_path ${query_dir}/query_emb.pkl \
--encode_is_qry
# encode corpus
for s in $(seq -f "%02g" 0 19)
do
python encode_gtr-base-st.py \
--output_dir=temp \
--model_name_or_path sentence-transformers/gtr-t5-base \
--bf16 \
--per_device_eval_batch_size 1024 \
--dataset_name Tevatron/wikipedia-nq-corpus \
--encoded_save_path ${corpus_dir}/corpus_emb.$s.pkl \
--encode_num_shard 20 \
--encode_shard_index $s
done
python -m tevatron.faiss_retriever \
--query_reps ${query_dir}/query_emb.pkl \
--passage_reps ${corpus_dir}/'corpus_emb.*.pkl' \
--depth 1000 \
--batch_size 128 \
--save_text \
--save_ranking_to ${result_dir}/run.nq.gtr-base-st.txt
python -m tevatron.utils.format.convert_result_to_trec \
--input ${result_dir}/run.nq.gtr-base-st.txt \
--output ${result_dir}/run.nq.gtr-base-st.trec
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
--topics dpr-nq-test \
--index wikipedia-dpr \
--input ${result_dir}/run.nq.gtr-base-st.trec \
--output ${result_dir}/run.nq.gtr-base-st.json
python -m pyserini.eval.evaluate_dpr_retrieval \
--retrieval ${result_dir}/run.nq.gtr-base-st.json \
--topk 10 20 100 1000
- DPR experiments: experiment_dpr.sh
- DPR with different pooling methods experiments: experiment_dpr_pooling.sh
- DPR with product quantization experiments: experiment_dpr_pq.sh