Code for "Do Differentible Simulators Give Better Policy Gradients"?
Add the git repo to your PYTHONPATH
. Then test by import alpha_gradient
We provide multiple examples that can be run.
To visualize the per-coordinate bias and variance on simple one-step examples,
- BallWithWall example:
python3 examples/ball_with_wall/alpha_coordinate_sweep.py
- Pivot example:
python3 examples/pivot/alpha_coordinate_sweep.py
We include some trajectory optimization examples.
- Friction example:
python3 examples/friction/friction_test.py
- Pushing with stiffness 10:
python3 examples/curling/curling_10.py
- Pushing with stiffness 1000:
python3 examples/curling/curling_1000.py
- Robot motion planning:
python3 examples/motion_planning/roomba_test.py
Closed-loop policy optimization examples are:
- Finite-Horizon Static-Policy LQR:
python3 examples/linear_system/linear_test.py
- Tennis:
python3 examples/breakout/run_bc_policyopt.py