-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5c1a5c4
commit 7a71475
Showing
4 changed files
with
78 additions
and
45 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
from flint.flint_base.flint_context cimport getprec | ||
from flint.types.acb cimport acb | ||
from flint.types.acb_mat cimport acb_mat | ||
from flint.flintlib.acb cimport * | ||
from flint.flintlib.acb_mat cimport * | ||
from flint.flintlib.acb_theta cimport * | ||
|
||
def acb_mat_theta(acb_mat z, acb_mat tau, ulong square=False): | ||
r""" | ||
Computes the vector valued Riemann theta function `(\theta_{a,b}{z, tau) : a, b \in \{0,1\}^{g}\)` or its squares. | ||
This is a wrapper for the function `acb_theta_all` and it follows the same conventions for the ordering of the theta characteristics. | ||
This should be used via method `acb_mat.theta` with the order of `z` and `tau` swapped, | ||
>>> from flint import acb, acb_mat, showgood | ||
>>> z = acb(1+1j); tau = acb(1.25+3j) | ||
>>> t0, t1, t2, t3 = acb_mat([[tau]]).theta(acb_mat([[z]])) | ||
>>> sum([abs(x) for x in acb_mat([z.modular_theta(tau)]) - acb_mat([[-t3,t2,t0,t1]])]) | ||
[+/- 3.82e-14] | ||
>>> for i in range(4):showgood(lambda: acb_mat([[tau]]).theta(acb_mat([[z]]))[i], dps=25) | ||
... | ||
0.9694430387796704100046143 - 0.03055696120816803328582847j | ||
1.030556961196006476576271 + 0.03055696120816803328582847j | ||
-1.220790267576967690128359 - 1.827055516791154669091679j | ||
-1.820235910124989594900076 + 1.216251950154477951760042j | ||
>>> acb_mat([[1j,0],[0,2*1j]]).theta(acb_mat([[0],[0]])) | ||
([1.09049252082308 +/- 3.59e-15] + [+/- 2.43e-16]j, [1.08237710165638 +/- 4.15e-15] + [+/- 2.43e-16]j, [0.916991251621117 +/- 6.30e-16] + [+/- 2.43e-16]j, [0.910167024735558 +/- 7.93e-16] + [+/- 2.43e-16]j, [0.451696791791346 +/- 5.46e-16] + [+/- 2.43e-16]j, [+/- 2.43e-16] + [+/- 2.43e-16]j, [0.379830212998946 +/- 4.47e-16] + [+/- 2.43e-16]j, [+/- 2.43e-16] + [+/- 2.43e-16]j, [0.916991251621117 +/- 6.30e-16] + [+/- 2.43e-16]j, [0.910167024735558 +/- 7.93e-16] + [+/- 2.43e-16]j, [+/- 2.43e-16] + [+/- 2.43e-16]j, [+/- 2.43e-16] + [+/- 2.43e-16]j, [0.379830212998946 +/- 4.47e-16] + [+/- 2.43e-16]j, [+/- 2.43e-16] + [+/- 2.43e-16]j, [+/- 2.43e-16] + [+/- 2.43e-16]j, [+/- 2.43e-16] + [+/- 2.43e-16]j) | ||
""" | ||
g = tau.nrows() | ||
assert tau.ncols() == g | ||
assert z.nrows() == g | ||
assert z.ncols() == 1 | ||
|
||
# convert input | ||
cdef acb_ptr zvec | ||
zvec = _acb_vec_init(g) | ||
cdef long i | ||
for i in range(g): | ||
acb_set(zvec + i, acb_mat_entry(z.val, i, 0)) | ||
|
||
# initialize the output | ||
cdef slong nb = 1 << (2 * g) | ||
cdef acb_ptr theta = _acb_vec_init(nb) | ||
|
||
acb_theta_all(theta, zvec, tau.val, square, getprec()) | ||
_acb_vec_clear(zvec, g) | ||
# copy the output | ||
res = tuple() | ||
cdef acb r | ||
for i in range(nb): | ||
r = acb.__new__(acb) | ||
acb_set(r.val, theta + i) | ||
res += (r,) | ||
_acb_vec_clear(theta, nb) | ||
return res |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters