Skip to content

fengshikun/MobilePose-pytorch

 
 

Repository files navigation

MobilePose

MobilePose is a Tiny PyTorch implementation of single person 2D pose estimation framework. The aim is to provide the interface of the training/inference/evaluation, and the dataloader with various data augmentation options. And final trained model can satisfy basic requirements(speed+size+accuracy) for mobile device.

Some codes for mobilenetV2 and display are brought from pytorch-mobilenet-v2 and tf-pose-estimation. Thanks to the original authors.

Functionality

  1. Tiny trained model (Resnet18[43MB], MobilenetV2[8.9MB])
  2. Fast inference speed (GPU>100FPS, CPU~30FPS)
  3. Accurate keypoint estimation (75~85mAP(0.5IoU))

Requirements:

  • Python 3.6.2
  • Pytorch 0.2.0_3
  • imgaug 0.2.5

Todo List:

  • multi-thread dataloader
  • training and inference
  • performance evaluation
  • multi-scale training
  • support resnet18/mobilenetV2
  • data augmentation(rotate/shift/flip/multi-scale/noise)
  • Macbook camera realtime display script

Usage

  1. Training:
export CUDA_VISIBLE_DEVICES=0; python training.py --model=mobilenet/resnet --gpu=0
  1. Evaluation
export CUDA_VISIBLE_DEVICES=0; python eval.py --model=mobilenet/resnet
  1. Realtime visualization:
python run_webcam.py --model=mobilenet/resnet

Contributors

MobilePose is developed and maintained by Yuliang Xiu, Zexin Chen and Yinghong Fang.

License

MobilePose is freely available for free non-commercial use. For commercial queries, please contact Cewu Lu or SightPlus Co. Ltd.

About

Single Person Pose Estimation for Mobile Device

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 88.5%
  • Python 5.3%
  • MATLAB 3.2%
  • Lua 1.1%
  • C++ 1.1%
  • C 0.8%