-
Notifications
You must be signed in to change notification settings - Fork 193
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Draft] Create blocked Jacobi method for eigen decomposition #1510
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
@@ -0,0 +1,254 @@ | ||||||
defmodule Nx.LinAlg.BlockEigh do | ||||||
@moduledoc """ | ||||||
Parallel Jacobi symmetric eigendecomposition. | ||||||
|
||||||
Reference implementation taking from XLA's eigh_expander | ||||||
which is built on the approach in: | ||||||
Brent, R. P., & Luk, F. T. (1985). The solution of singular-value | ||||||
and symmetric eigenvalue problems on multiprocessor arrays. | ||||||
SIAM Journal on Computing, 6(1), 69-84. https://doi.org/10.1137/0906007 | ||||||
""" | ||||||
require Nx | ||||||
|
||||||
import Nx.Defn | ||||||
|
||||||
defn calc_rot(tl, tr, br) do | ||||||
a = Nx.take_diagonal(br) | ||||||
b = Nx.take_diagonal(tr) | ||||||
c = Nx.take_diagonal(tl) | ||||||
|
||||||
tau = (a - c) / (2 * b) | ||||||
t = Nx.sqrt(1 + Nx.pow(tau, 2)) | ||||||
t = Nx.select(Nx.greater_equal(tau, 0), 1 / (tau + t), 1 / (tau - t)) | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
|
||||||
pred = Nx.less_equal(Nx.abs(b), 0.1 * 1.0e-4 * Nx.min(Nx.abs(a), Nx.abs(c))) | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
t = Nx.select(pred, 0.0, t) | ||||||
|
||||||
c = 1.0 / Nx.sqrt(1.0 + Nx.pow(t, 2)) | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
s = t * c | ||||||
|
||||||
rt1 = tl - t * tr | ||||||
rt2 = br + t * tr | ||||||
|
||||||
{rt1, rt2, c, s} | ||||||
end | ||||||
|
||||||
defn sq_norm(tl, tr, bl, br) do | ||||||
Nx.sum(Nx.pow(tl, 2) + Nx.pow(tr, 2) + Nx.pow(bl, 2) + Nx.pow(br, 2)) | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
end | ||||||
|
||||||
defn off_norm(tl, tr, bl, br) do | ||||||
{n, _} = Nx.shape(tl) | ||||||
diag = Nx.broadcast(0, {n}) | ||||||
o_tl = Nx.put_diagonal(tl, diag) | ||||||
o_br = Nx.put_diagonal(br, diag) | ||||||
|
||||||
Nx.sum(Nx.pow(o_tl, 2) + Nx.pow(tr, 2) + Nx.pow(bl, 2) + Nx.pow(o_br, 2)) | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
end | ||||||
|
||||||
@doc """ | ||||||
Calculates the Frobenius norm and the norm of the off-diagonals from | ||||||
the submatrices. Used to calculate convergeance. | ||||||
""" | ||||||
defn norms(tl, tr, bl, br) do | ||||||
frob = sq_norm(tl, tr, bl, br) | ||||||
off = off_norm(tl, tr, bl, br) | ||||||
{frob, off} | ||||||
end | ||||||
|
||||||
defn eigh(matrix) do | ||||||
matrix | ||||||
|> Nx.revectorize([collapsed_axes: :auto], | ||||||
target_shape: {Nx.axis_size(matrix, -2), Nx.axis_size(matrix, -1)} | ||||||
) | ||||||
|> decompose() | ||||||
|> then(fn {w, v} -> | ||||||
revectorize_result({w, v}, matrix) | ||||||
end) | ||||||
end | ||||||
Comment on lines
+59
to
+68
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I believe this should be the only |
||||||
|
||||||
deftransformp revectorize_result({eigenvals, eigenvecs}, a) do | ||||||
shape = Nx.shape(a) | ||||||
|
||||||
{ | ||||||
Nx.revectorize(eigenvals, a.vectorized_axes, | ||||||
target_shape: Tuple.delete_at(shape, tuple_size(shape) - 1) | ||||||
), | ||||||
Nx.revectorize(eigenvecs, a.vectorized_axes, target_shape: shape) | ||||||
} | ||||||
end | ||||||
|
||||||
defn decompose(matrix) do | ||||||
{n, _} = Nx.shape(matrix) | ||||||
|
||||||
if n > 1 do | ||||||
m_decompose(matrix) | ||||||
else | ||||||
{Nx.tensor([1], type: matrix.type), Nx.take_diagonal(matrix)} | ||||||
end | ||||||
end | ||||||
|
||||||
defn m_decompose(matrix) do | ||||||
{n, _} = Nx.shape(matrix) | ||||||
i_n = n - 1 | ||||||
{mid, _} = Nx.shape(matrix[[0..i_n//2, 0..i_n//2]]) | ||||||
i_mid = mid - 1 | ||||||
|
||||||
{tl, tr, bl, br} = | ||||||
{matrix[[0..i_mid, 0..i_mid]], matrix[[0..i_mid, mid..i_n]], matrix[[mid..i_n, 0..i_mid]], | ||||||
matrix[[mid..i_n, mid..i_n]]} | ||||||
|
||||||
# Pad if not even | ||||||
{tl, tr, bl, br} = | ||||||
if Nx.remainder(n, 2) == 1 do | ||||||
tr = Nx.pad(tr, 0, [{0, 0, 0}, {0, 1, 0}]) | ||||||
bl = Nx.pad(bl, 0, [{0, 1, 0}, {0, 0, 0}]) | ||||||
br = Nx.pad(br, 0, [{0, 1, 0}, {0, 1, 0}]) | ||||||
{tl, tr, bl, br} | ||||||
else | ||||||
{tl, tr, bl, br} | ||||||
end | ||||||
|
||||||
# Initialze tensors to hold eigenvectors | ||||||
v_tl = Nx.eye(mid, type: :f32) | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. why force |
||||||
v_tr = Nx.broadcast(0.0, {mid, mid}) | ||||||
v_bl = Nx.broadcast(0.0, {mid, mid}) | ||||||
v_br = Nx.eye(mid, type: :f32) | ||||||
|
||||||
{frob_norm, off_norm} = norms(tl, tr, bl, br) | ||||||
|
||||||
# Nested loop | ||||||
# Outside loop performs the "sweep" operation until the norms converge | ||||||
# or max iterations are hit. The Brent/Luk paper states that Log2(n) is | ||||||
# a good estimate for convergence, but XLA chose a static number which wouldn't | ||||||
# be reached until a matrix roughly greater than 20kx20k. | ||||||
# | ||||||
# The inner loop performs "sweep" rounds of n - 1, which is enough permutations to allow | ||||||
# all sub matrices to share the needed values. | ||||||
{_, _, tl, _tr, _bl, br, v_tl, v_tr, v_bl, v_br, _} = | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. You can use a pattern for organizing the while state that we do quite a lot:
|
||||||
while {frob_norm, off_norm, tl, tr, bl, br, v_tl, v_tr, v_bl, v_br, i = 0}, | ||||||
off_norm > Nx.pow(1.0e-10, 2) * frob_norm and i < 15 do | ||||||
{tl, tr, bl, br, v_tl, v_tr, v_bl, v_br} = | ||||||
while {tl, tr, bl, br, v_tl, v_tr, v_bl, v_br}, _n <- 0..i_n do | ||||||
{rt1, rt2, c, s} = calc_rot(tl, tr, br) | ||||||
# build row and column vectors for parrelelized rotations | ||||||
c_v = Nx.reshape(c, {mid, 1}) | ||||||
s_v = Nx.reshape(s, {mid, 1}) | ||||||
c_h = Nx.reshape(c, {1, mid}) | ||||||
s_h = Nx.reshape(s, {1, mid}) | ||||||
|
||||||
# Rotate rows | ||||||
{tl, tr, bl, br} = { | ||||||
tl * c_v - bl * s_v, | ||||||
tr * c_v - br * s_v, | ||||||
tl * s_v + bl * c_v, | ||||||
tr * s_v + br * c_v | ||||||
} | ||||||
|
||||||
# Rotate cols | ||||||
{tl, tr, bl, br} = { | ||||||
tl * c_h - tr * s_h, | ||||||
tl * s_h + tr * c_h, | ||||||
bl * c_h - br * s_h, | ||||||
bl * s_h + br * c_h | ||||||
} | ||||||
|
||||||
# Store results and permute values across sub matrices | ||||||
tl = Nx.put_diagonal(tl, Nx.take_diagonal(rt1)) | ||||||
tr = Nx.put_diagonal(tr, Nx.broadcast(0, {mid})) | ||||||
bl = Nx.put_diagonal(bl, Nx.broadcast(0, {mid})) | ||||||
br = Nx.put_diagonal(br, Nx.take_diagonal(rt2)) | ||||||
|
||||||
{tl, tr} = permute_cols_in_row(tl, tr) | ||||||
{bl, br} = permute_cols_in_row(bl, br) | ||||||
{tl, bl} = permute_rows_in_col(tl, bl) | ||||||
{tr, br} = permute_rows_in_col(tr, br) | ||||||
|
||||||
# Rotate to calc vectors | ||||||
{v_tl, v_tr, v_bl, v_br} = { | ||||||
v_tl * c_v - v_bl * s_v, | ||||||
v_tr * c_v - v_br * s_v, | ||||||
v_tl * s_v + v_bl * c_v, | ||||||
v_tr * s_v + v_br * c_v | ||||||
} | ||||||
|
||||||
# permute for vectors | ||||||
{v_tl, v_bl} = permute_rows_in_col(v_tl, v_bl) | ||||||
{v_tr, v_br} = permute_rows_in_col(v_tr, v_br) | ||||||
|
||||||
{tl, tr, bl, br, v_tl, v_tr, v_bl, v_br} | ||||||
end | ||||||
|
||||||
{frob_norm, off_norm} = norms(tl, tr, bl, br) | ||||||
|
||||||
{frob_norm, off_norm, tl, tr, bl, br, v_tl, v_tr, v_bl, v_br, i + 1} | ||||||
end | ||||||
|
||||||
w = Nx.concatenate([Nx.take_diagonal(tl), Nx.take_diagonal(br)]) | ||||||
|
||||||
v = | ||||||
Nx.concatenate([ | ||||||
Nx.concatenate([v_tl, v_tr], axis: 1), | ||||||
Nx.concatenate([v_bl, v_br], axis: 1) | ||||||
]) | ||||||
|
||||||
# trim padding | ||||||
if Nx.remainder(n, 2) == 1 do | ||||||
{w[0..i_n], Nx.transpose(v[[0..i_n, 0..i_n]])} | ||||||
else | ||||||
{w, v} | ||||||
end | ||||||
end | ||||||
|
||||||
defn permute_rows_in_col(top, bottom) do | ||||||
{k, _} = Nx.shape(top) | ||||||
|
||||||
{top_out, bottom_out} = | ||||||
cond do | ||||||
k == 2 -> | ||||||
{Nx.concatenate([top[0..0], bottom[0..0]], axis: 0), | ||||||
Nx.concatenate( | ||||||
[ | ||||||
bottom[1..-1//1], | ||||||
top[(k - 1)..(k - 1)] | ||||||
], | ||||||
axis: 0 | ||||||
)} | ||||||
|
||||||
k == 1 -> | ||||||
{top, bottom} | ||||||
|
||||||
true -> | ||||||
{Nx.concatenate([top[0..0], bottom[0..0], top[1..(k - 2)]], axis: 0), | ||||||
Nx.concatenate( | ||||||
[ | ||||||
bottom[1..-1], | ||||||
top[(k - 1)..(k - 1)] | ||||||
], | ||||||
axis: 0 | ||||||
)} | ||||||
end | ||||||
|
||||||
{top_out, bottom_out} | ||||||
end | ||||||
|
||||||
defn permute_cols_in_row(left, right) do | ||||||
{k, _} = Nx.shape(left) | ||||||
|
||||||
{left_out, right_out} = | ||||||
cond do | ||||||
k == 2 -> | ||||||
{Nx.concatenate([left[[.., 0..0]], right[[.., 0..0]]], axis: 1), | ||||||
Nx.concatenate([right[[.., 1..(k - 1)]], left[[.., (k - 1)..(k - 1)]]], axis: 1)} | ||||||
|
||||||
k == 1 -> | ||||||
{left, right} | ||||||
|
||||||
true -> | ||||||
{Nx.concatenate([left[[.., 0..0]], right[[.., 0..0]], left[[.., 1..(k - 2)]]], axis: 1), | ||||||
Nx.concatenate([right[[.., 1..(k - 1)]], left[[.., (k - 1)..(k - 1)]]], axis: 1)} | ||||||
end | ||||||
|
||||||
{left_out, right_out} | ||||||
end | ||||||
end |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.