Skip to content

Bird image classification using convolutional neural networks in Python with Lasagne API.

Notifications You must be signed in to change notification settings

dror-g/BirdID_CNN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BirdID_CNN

--- STRUCTURE ---

Classify a set of 9 category bird images using convolutionary neural network with Lasagne API

Convolutionary Neural Network (CNN) were used to classify photos of 9 species of birds. The dataset had a minimum of 98 images per category.

Images are resized to 140x140, and then augmented using random horizontal flips and crops to 128x128 with random offsets. The validation set goes through the exact same method for augmentation.

The networks were trained using stochastic gradient descent(SGD), utilizing the adaptive subgradient method (Adagrad) to change the learning rate over time. The initial learning rate with adagrad was set to 0.01.

An L2 regularization penalty was applied to the stoachastic loss function to allow for better generalization (l2 regularization rate = 0.0001)

Rectified linear units were used as the activation function for both the convolutional and fully connected layers.

"Same" convolutions were used through zero-padding to keep the input and output dimensions the same.

--- RESULT ---

Case 1: Classifying 2 categories of birds (Carolina Wren && Tufted Titmouse)

Case 2: Classifying 9 categories of birds (Caroline Chickadee && Crolina Wren && Downy Wood Pecker && Northern Cardinal && Red Bellied Woodpe && Tufted Titmouse && White Throated Spar && Yellow Rumped Warbler)

The CNN script and result can be found in folder "./Nov2nd2015"

About

Bird image classification using convolutional neural networks in Python with Lasagne API.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%