Aleksander Buszydlik
Karol Dobiczek
Francesco Piccoli
Edmundo Sanz-Gadea López
- Clone repo:
git clone https://github.com/drobiu/periodic-graph-traffic-forecasting.git
- Setup conda env:
conda env create -f environment.yml
.
├── README.md
├── data
│ ├── ...
└── src
├── GLOBAL.py
├── __init__.py
├── models
│ ├── CHEB.py
│ ├── GCN.py
│ ├── TAG.py
│ ├── __init__.py
│ ├── agcrn
│ │ ├── ...
│ ├── arima.py
│ ├── dcrnn
│ │ ├── ...
├── notebooks
│ ├── basic_GNN.ipynb
│ └── data_loading.ipynb
├── hyperparams_optimization.py
├── train.py
└── utils.py
models
directory contains the our model and the baselines utilized.
train.py
file is used to train our model defined in the models
folder.
utils.py
file contains all the functions used to train and all the functions to create the product graph.
hyperparams_optimization.py
file contains the code we used to perform hyperparams optimization.