Skip to content

drobiu/periodic-graph-traffic-forecasting

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation




Modeling Spatial, Temporal, and Periodical Dependencies in Traffic with Product Graphs

CS4350 Machine Learning for Graph Data (Group 27)

Authors

Aleksander Buszydlik

Karol Dobiczek

Francesco Piccoli

Edmundo Sanz-Gadea López

User Manual

  • Clone repo:
git clone https://github.com/drobiu/periodic-graph-traffic-forecasting.git
  • Setup conda env:
conda env create -f environment.yml

Repository structure

.
├── README.md
├── data
│   ├── ...
└── src
    ├── GLOBAL.py
    ├── __init__.py
    ├── models
    │   ├── CHEB.py
    │   ├── GCN.py
    │   ├── TAG.py
    │   ├── __init__.py
    │   ├── agcrn
    │   │   ├── ...
    │   ├── arima.py
    │   ├── dcrnn
    │   │   ├── ...
    ├── notebooks
    │   ├── basic_GNN.ipynb
    │   └── data_loading.ipynb
    ├── hyperparams_optimization.py
    ├── train.py
    └── utils.py

models directory contains the our model and the baselines utilized.

train.py file is used to train our model defined in the models folder.

utils.py file contains all the functions used to train and all the functions to create the product graph.

hyperparams_optimization.py file contains the code we used to perform hyperparams optimization.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •