Skip to content

Commit

Permalink
Merge pull request #1510 from sstanovnik/benches
Browse files Browse the repository at this point in the history
[ENH] Simple benchmarking suite.
  • Loading branch information
janezd authored Oct 21, 2016
2 parents 7c9b1ad + 341dbcc commit 9054060
Show file tree
Hide file tree
Showing 2 changed files with 233 additions and 0 deletions.
157 changes: 157 additions & 0 deletions benchmark/base.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
import unittest
from functools import wraps
from time import perf_counter
import platform

import numpy as np

from Orange.data import Table

# override method prefix for niceness
BENCH_METHOD_PREFIX = 'bench'
unittest.TestLoader.testMethodPrefix = BENCH_METHOD_PREFIX


def _timeitlike_time_format(time_seconds, precision=3):
"""Shamelessly adapted formatting from timeit.py
Parameters
----------
time_seconds : float
The time in seconds
precision : int
The precision of the output. All digits.
Returns
-------
str
A timeit-like format (with usec, msec, sec).
"""
usec = time_seconds * 1e6
if usec < 1000:
return "%.*g usec" % (precision, usec)
else:
msec = usec / 1000
if msec < 1000:
return "%.*g msec" % (precision, msec)
else:
sec = msec / 1000
return "%.*g sec" % (precision, sec)


def _bench_skipper(condition, skip_message):
"""A decorator factory for sipping benchmarks conditionally.
Parameters
----------
condition : bool or function
A boolean value or a lambda callback to determine
whether the benchmark should be skipped.
skip_message : str
The message to display if the bench is skipped.
Returns
-------
function
The custom skip decorator.
"""
def decorator(func):
if (isinstance(condition, bool) and condition) or \
(not isinstance(condition, bool) and condition()):
# display a message and skip bench
wrapper = unittest.skip("[{}] skipped: {}\n".format(_get_bench_name(func), skip_message))(func)
else:
# allow execution
@wraps(func)
def wrapper(*args, **kwargs):
func(*args, **kwargs)
return wrapper
return decorator


def _get_bench_name(bench_func):
"""Get the benchmark name from its function object."""
return bench_func.__name__[len(BENCH_METHOD_PREFIX) + 1:]


def benchmark(setup=None, number=10, repeat=3, warmup=5):
"""A parametrized decorator to benchmark the test.
Setting up the bench can happen in the normal setUp,
which is applied to all benches identically, and additionally
the setup parameter, which is bench-specific.
Parameters
----------
setup : function
A function to call once to set up the test.
number : int
The number of loops of repeat repeats to run.
repeat : int
The number of repeats in each loop.
warmup : int
The number of warmup runs of the function.
"""
def real_decorator(func):
@wraps(func)
def wrapper(self, *args, **kwargs):
if setup is not None:
setup(self)
for i in range(warmup):
func(self, *args, **kwargs)
clock_time_starts = np.zeros((number, repeat))
clock_time_ends = np.zeros((number, repeat))
for i in range(number):
for j in range(repeat):
clock_time_starts[i, j] = perf_counter()
func(self, *args, **kwargs)
clock_time_ends[i, j] = perf_counter()
clock_times = (clock_time_ends - clock_time_starts).min(axis=1)

print("[{}] with {} loops, best of {}:"
.format(_get_bench_name(func), number, repeat))
print("\tmin {:4s} per loop".format(_timeitlike_time_format(clock_times.min())))
print("\tavg {:4s} per loop".format(_timeitlike_time_format(clock_times.mean())))
return wrapper
return real_decorator


pandas_only = _bench_skipper(not hasattr(Table, '_metadata'),
"Not a pandas environment.")
non_pandas_only = _bench_skipper(hasattr(Table, '_metadata'),
"Not a pre-pandas environment.")


# see Benchmark.setUpClass()
global_setup_ran = False


class Benchmark(unittest.TestCase):
"""A base class for all benchmarks."""

@classmethod
def getPlatformSpecificDetails(cls):
"""Get Windows/Linux/OSX-specific details as a string."""
win = platform.win32_ver()
lin = platform.linux_distribution()
osx = platform.mac_ver()
if win[0]:
return "{} {} {}".format(*win[:3])
elif lin[0]:
return "{} {} {}".format(*lin)
elif osx[0]:
return "OSX {} {}".format(osx[0], osx[2])
else:
return "no specific system info"

@classmethod
def setUpClass(cls):
"""Runs once globally to print system information."""
global global_setup_ran
if not global_setup_ran:
print("\nRunning benchmark with {} v{} on {} ({})"
.format(platform.python_implementation(),
platform.python_version(),
platform.platform(),
Benchmark.getPlatformSpecificDetails()))
global_setup_ran = True
76 changes: 76 additions & 0 deletions benchmark/bench_basic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
from .base import Benchmark, benchmark, pandas_only, non_pandas_only
from Orange.data import Table
from Orange.preprocess import Discretize
from Orange.preprocess.discretize import EqualFreq

# noinspection PyBroadException
try:
from Orange.data.filter import FilterContinuous, FilterDiscrete, Values
except:
# legacy only
pass


# noinspection PyStatementEffect
class BenchBasic(Benchmark):
def setUp(self):
self.iris = Table('iris')
self.adult = Table('adult')
self.discretizer = Discretize(EqualFreq(n=3))

@benchmark(number=100)
def bench_iris_read(self):
Table('iris')

@benchmark(number=5, warmup=1)
def bench_adult_read(self):
Table('adult')

@benchmark(number=100)
def bench_iris_create_X(self):
self.iris.X

@benchmark(number=50)
def bench_adult_create_X(self):
self.adult.X

@pandas_only
@benchmark(number=20)
def bench_adult_filter_pandas(self):
self.adult[(self.adult.age > 30) & (self.adult.workclass == 'Private')]

@non_pandas_only
@benchmark(number=20)
def bench_adult_filter_pre_pandas(self):
age_filter = FilterContinuous(self.adult.domain["age"], FilterContinuous.Greater, 30)
workclass_filter = FilterDiscrete(self.adult.domain["workclass"], [0])
combined = Values([age_filter, workclass_filter])
combined(self.adult)

@benchmark(number=50)
def bench_iris_basic_stats(self):
self.iris._compute_basic_stats()

@benchmark(number=20)
def bench_iris_distributions(self):
self.iris._compute_distributions()

@benchmark()
def bench_iris_contingency(self):
self.iris._compute_contingency()

@benchmark()
def bench_iris_discretize(self):
self.discretizer(self.iris)

@pandas_only
@benchmark()
def bench_iris_iteration_pandas(self):
for _, _ in self.iris.iterrows():
pass

@non_pandas_only
@benchmark()
def bench_iris_iteration_pre_pandas(self):
for _ in self.iris:
pass

0 comments on commit 9054060

Please sign in to comment.