-
Notifications
You must be signed in to change notification settings - Fork 3
/
gcmisc.c
223 lines (216 loc) · 7.21 KB
/
gcmisc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#include <math.h>
#include <assert.h>
#include <string.h>
#include "mgpriv.h"
#include "kalloc.h"
// reorder gcs->a[] and gcs->lc[] such that they are in the same order as gcs->gc[]
void mg_gchain_restore_order(void *km, mg_gchains_t *gcs)
{
int32_t i, n_a, n_lc;
mg_llchain_t *lc;
mg128_t *a;
KMALLOC(km, lc, gcs->n_lc);
KMALLOC(km, a, gcs->n_a);
for (i = 0, n_a = n_lc = 0; i < gcs->n_gc; ++i) {
mg_gchain_t *gc = &gcs->gc[i];
assert(gc->cnt > 0);
memcpy(&lc[n_lc], &gcs->lc[gc->off], gc->cnt * sizeof(mg_llchain_t));
memcpy(&a[n_a], &gcs->a[gcs->lc[gc->off].off], gc->n_anchor * sizeof(mg128_t));
n_lc += gc->cnt, n_a += gc->n_anchor;
}
memcpy(gcs->lc, lc, gcs->n_lc * sizeof(mg_llchain_t));
memcpy(gcs->a, a, gcs->n_a * sizeof(mg128_t));
kfree(km, lc); kfree(km, a);
for (i = 0, n_lc = 0; i < gcs->n_gc; ++i) {
mg_gchain_t *gc = &gcs->gc[i];
gc->off = n_lc;
n_lc += gc->cnt;
}
for (i = 0, n_a = 0; i < gcs->n_lc; ++i) {
mg_llchain_t *lc = &gcs->lc[i];
lc->off = n_a;
n_a += lc->cnt;
}
}
// recompute gcs->gc[].{off,n_anchor} and gcs->lc[].off, ASSUMING they are properly ordered (see mg_gchain_restore_order)
void mg_gchain_restore_offset(mg_gchains_t *gcs)
{
int32_t i, j, n_a, n_lc;
for (i = 0, n_a = n_lc = 0; i < gcs->n_gc; ++i) {
mg_gchain_t *gc = &gcs->gc[i];
gc->off = n_lc;
for (j = 0, gc->n_anchor = 0; j < gc->cnt; ++j) {
mg_llchain_t *lc = &gcs->lc[n_lc + j];
lc->off = n_a;
n_a += lc->cnt;
gc->n_anchor += lc->cnt;
}
n_lc += gc->cnt;
}
assert(n_lc == gcs->n_lc && n_a == gcs->n_a);
}
// sort chains by score
void mg_gchain_sort_by_score(void *km, mg_gchains_t *gcs)
{
mg128_t *z;
mg_gchain_t *gc;
int32_t i;
KMALLOC(km, z, gcs->n_gc);
KMALLOC(km, gc, gcs->n_gc);
for (i = 0; i < gcs->n_gc; ++i)
z[i].x = (uint64_t)gcs->gc[i].score << 32 | gcs->gc[i].hash, z[i].y = i;
radix_sort_128x(z, z + gcs->n_gc);
for (i = gcs->n_gc - 1; i >= 0; --i)
gc[gcs->n_gc - 1 - i] = gcs->gc[z[i].y];
memcpy(gcs->gc, gc, gcs->n_gc * sizeof(mg_gchain_t));
kfree(km, z); kfree(km, gc);
mg_gchain_restore_order(km, gcs); // this put gcs in the proper order
}
// set r[].{id,parent,subsc}, ASSUMING r[] is sorted by score
void mg_gchain_set_parent(void *km, float mask_level, int n, mg_gchain_t *r, int sub_diff, int hard_mask_level)
{
int i, j, k, *w;
uint64_t *cov;
if (n <= 0) return;
for (i = 0; i < n; ++i) r[i].id = i;
cov = (uint64_t*)kmalloc(km, n * sizeof(uint64_t));
w = (int*)kmalloc(km, n * sizeof(int));
w[0] = 0, r[0].parent = 0;
for (i = 1, k = 1; i < n; ++i) {
mg_gchain_t *ri = &r[i];
int si = ri->qs, ei = ri->qe, n_cov = 0, uncov_len = 0;
if (hard_mask_level) goto skip_uncov;
for (j = 0; j < k; ++j) { // traverse existing primary hits to find overlapping hits
mg_gchain_t *rp = &r[w[j]];
int sj = rp->qs, ej = rp->qe;
if (ej <= si || sj >= ei) continue;
if (sj < si) sj = si;
if (ej > ei) ej = ei;
cov[n_cov++] = (uint64_t)sj<<32 | ej;
}
if (n_cov == 0) {
goto set_parent_test; // no overlapping primary hits; then i is a new primary hit
} else if (n_cov > 0) { // there are overlapping primary hits; find the length not covered by existing primary hits
int j, x = si;
radix_sort_gfa64(cov, cov + n_cov);
for (j = 0; j < n_cov; ++j) {
if ((int)(cov[j]>>32) > x) uncov_len += (cov[j]>>32) - x;
x = (int32_t)cov[j] > x? (int32_t)cov[j] : x;
}
if (ei > x) uncov_len += ei - x;
}
skip_uncov:
for (j = 0; j < k; ++j) { // traverse existing primary hits again
mg_gchain_t *rp = &r[w[j]];
int sj = rp->qs, ej = rp->qe, min, max, ol;
if (ej <= si || sj >= ei) continue; // no overlap
min = ej - sj < ei - si? ej - sj : ei - si;
max = ej - sj > ei - si? ej - sj : ei - si;
ol = si < sj? (ei < sj? 0 : ei < ej? ei - sj : ej - sj) : (ej < si? 0 : ej < ei? ej - si : ei - si); // overlap length; TODO: this can be simplified
if ((float)ol / min - (float)uncov_len / max > mask_level) {
int cnt_sub = 0;
ri->parent = rp->parent;
rp->subsc = rp->subsc > ri->score? rp->subsc : ri->score;
if (ri->cnt >= rp->cnt) cnt_sub = 1;
if (cnt_sub) ++rp->n_sub;
break;
}
}
set_parent_test:
if (j == k) w[k++] = i, ri->parent = i, ri->n_sub = 0;
}
kfree(km, cov);
kfree(km, w);
}
// set r[].flt, i.e. mark weak suboptimal chains as filtered
int mg_gchain_flt_sub(float pri_ratio, int min_diff, int best_n, int n, mg_gchain_t *r)
{
if (pri_ratio > 0.0f && n > 0) {
int i, k, n_2nd = 0;
for (i = k = 0; i < n; ++i) {
int p = r[i].parent;
if (p == i) { // primary
r[i].flt = 0, ++k;
} else if ((r[i].score >= r[p].score * pri_ratio || r[i].score + min_diff >= r[p].score) && n_2nd < best_n) {
if (!(r[i].qs == r[p].qs && r[i].qe == r[p].qe && r[i].ps == r[p].ps && r[i].pe == r[p].pe)) // not identical hits; TODO: check path as well
r[i].flt = 0, ++n_2nd, ++k;
else r[i].flt = 1;
} else r[i].flt = 1;
}
return k;
}
return n;
}
// hard drop filtered chains, ASSUMING gcs is properly ordered
void mg_gchain_drop_flt(void *km, mg_gchains_t *gcs)
{
int32_t i, n_gc, n_lc, n_a, n_lc0, n_a0, *o2n;
if (gcs->n_gc == 0) return;
KMALLOC(km, o2n, gcs->n_gc);
for (i = 0, n_gc = 0; i < gcs->n_gc; ++i) {
mg_gchain_t *r = &gcs->gc[i];
o2n[i] = -1;
if (r->flt || r->cnt == 0) {
kfree(gcs->km, r->p);
continue;
}
o2n[i] = n_gc++;
}
n_gc = n_lc = n_a = 0;
n_lc0 = n_a0 = 0;
for (i = 0; i < gcs->n_gc; ++i) {
mg_gchain_t *r = &gcs->gc[i];
if (o2n[i] >= 0) {
memmove(&gcs->a[n_a], &gcs->a[n_a0], r->n_anchor * sizeof(mg128_t));
memmove(&gcs->lc[n_lc], &gcs->lc[n_lc0], r->cnt * sizeof(mg_llchain_t));
gcs->gc[n_gc] = *r;
gcs->gc[n_gc].id = n_gc;
gcs->gc[n_gc].parent = o2n[gcs->gc[n_gc].parent];
++n_gc, n_lc += r->cnt, n_a += r->n_anchor;
}
n_lc0 += r->cnt, n_a0 += r->n_anchor;
}
assert(n_lc0 == gcs->n_lc && n_a0 == gcs->n_a);
kfree(km, o2n);
gcs->n_gc = n_gc, gcs->n_lc = n_lc, gcs->n_a = n_a;
if (n_a != n_a0) {
KREALLOC(gcs->km, gcs->a, gcs->n_a);
KREALLOC(gcs->km, gcs->lc, gcs->n_lc);
KREALLOC(gcs->km, gcs->gc, gcs->n_gc);
}
mg_gchain_restore_offset(gcs);
}
// estimate mapping quality
void mg_gchain_set_mapq(void *km, mg_gchains_t *gcs, int qlen, int max_mini, int min_gc_score)
{
static const float q_coef = 40.0f;
int64_t sum_sc = 0;
float uniq_ratio, r_sc, r_cnt;
int i, t_sc, t_cnt;
if (gcs == 0 || gcs->n_gc == 0) return;
t_sc = qlen < 100? qlen : 100;
t_cnt = max_mini < 10? max_mini : 10;
if (t_cnt < 5) t_cnt = 5;
r_sc = 1.0 / t_sc;
r_cnt = 1.0 / t_cnt;
for (i = 0; i < gcs->n_gc; ++i)
if (gcs->gc[i].parent == gcs->gc[i].id)
sum_sc += gcs->gc[i].score;
uniq_ratio = (float)sum_sc / (sum_sc + gcs->rep_len);
for (i = 0; i < gcs->n_gc; ++i) {
mg_gchain_t *r = &gcs->gc[i];
if (r->parent == r->id) {
int mapq, subsc;
float pen_s1 = (r->score > t_sc? 1.0f : r->score * r_sc) * uniq_ratio;
float x, pen_cm = r->n_anchor > t_cnt? 1.0f : r->n_anchor * r_cnt;
pen_cm = pen_s1 < pen_cm? pen_s1 : pen_cm;
subsc = r->subsc > min_gc_score? r->subsc : min_gc_score;
x = (float)subsc / r->score;
mapq = (int)(pen_cm * q_coef * (1.0f - x) * logf(r->score));
mapq -= (int)(4.343f * logf(r->n_sub + 1) + .499f);
mapq = mapq > 0? mapq : 0;
if (r->score > subsc && mapq == 0) mapq = 1;
r->mapq = mapq < 60? mapq : 60;
} else r->mapq = 0;
}
}