-
Notifications
You must be signed in to change notification settings - Fork 122
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[ENH] Added OneClassSVM to the anomaly detection module (#2342)
* added one class SVM class and test into aeon * Update .all-contributorsrc Added user to contributers * added documentation for OneClassSVM Class and API * Automatic `pre-commit` fixes * ran pre-commit, fixed line lenght and inserted link instead of :ref: * Update aeon/anomaly_detection/_one_class_svm.py Co-authored-by: Sebastian Schmidl <[email protected]> --------- Co-authored-by: Sebastian Schmidl <[email protected]> Co-authored-by: SebastianSchmidl <[email protected]>
- Loading branch information
1 parent
5631c01
commit 22bf341
Showing
5 changed files
with
263 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
"""OneClassSVM anomaly detector.""" | ||
|
||
__all__ = ["OneClassSVM"] | ||
|
||
from typing import Optional | ||
|
||
import numpy as np | ||
from sklearn.svm import OneClassSVM as OCSVM | ||
|
||
from aeon.anomaly_detection.base import BaseAnomalyDetector | ||
from aeon.utils.windowing import reverse_windowing, sliding_windows | ||
|
||
|
||
class OneClassSVM(BaseAnomalyDetector): | ||
"""OneClassSVM for anomaly detection. | ||
This class implements the OneClassSVM algorithm for anomaly detection | ||
from sklearn to be used in the aeon framework. All parameters are passed to | ||
the sklearn ``OneClassSVM`` except for `window_size` and `stride`, which are used to | ||
construct the sliding windows. | ||
.. list-table:: Capabilities | ||
:stub-columns: 1 | ||
* - Input data format | ||
- univariate and multivariate | ||
* - Output data format | ||
- anomaly scores | ||
* - Learning Type | ||
- semi-supervised | ||
The documentation for parameters has been adapted from | ||
(https://scikit-learn.org/dev/modules/generated/sklearn.svm.OneClassSVM.html). | ||
Here, `X` refers to the set of sliding windows extracted from the time series | ||
using :func:`aeon.utils.windowing.sliding_windows` with the parameters | ||
``window_size`` and ``stride``. The internal `X` has the shape | ||
`(n_windows, window_size * n_channels)`. | ||
Parameters | ||
---------- | ||
kernel : {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} or callable, \ | ||
default='rbf' | ||
Specifies the kernel type to be used in the algorithm. | ||
If none is given, 'rbf' will be used. If a callable is given it is | ||
used to precompute the kernel matrix. | ||
degree : int, default=3 | ||
Degree of the polynomial kernel function ('poly'). | ||
Must be non-negative. Ignored by all other kernels. | ||
gamma : {'scale', 'auto'} or float, default='scale' | ||
Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. | ||
- if ``gamma='scale'`` (default) is passed then it uses | ||
1 / (n_features * X.var()) as value of gamma, | ||
- if 'auto', uses 1 / n_features | ||
- if float, must be non-negative. | ||
.. versionchanged:: 0.22 | ||
The default value of ``gamma`` changed from 'auto' to 'scale'. | ||
coef0 : float, default=0.0 | ||
Independent term in kernel function. | ||
It is only significant in 'poly' and 'sigmoid'. | ||
tol : float, default=1e-3 | ||
Tolerance for stopping criterion. | ||
nu : float, default=0.5 | ||
An upper bound on the fraction of training | ||
errors and a lower bound of the fraction of support | ||
vectors. Should be in the interval (0, 1]. By default 0.5 | ||
will be taken. | ||
shrinking : bool, default=True | ||
Whether to use the shrinking heuristic. | ||
See https://scikit-learn.org/dev/modules/svm.html#shrinking-svm. | ||
cache_size : float, default=200 | ||
Specify the size of the kernel cache (in MB). | ||
verbose : bool, default=False | ||
Enable verbose output. Note that this setting takes advantage of a | ||
per-process runtime setting in libsvm that, if enabled, may not work | ||
properly in a multithreaded context. | ||
max_iter : int, default=-1 | ||
Hard limit on iterations within solver, or -1 for no limit. | ||
window_size : int, default=10 | ||
Size of the sliding window. | ||
stride : int, default=1 | ||
Stride of the sliding window. | ||
""" | ||
|
||
_tags = { | ||
"capability:univariate": True, | ||
"capability:multivariate": True, | ||
"capability:missing_values": False, | ||
"fit_is_empty": False, | ||
} | ||
|
||
def __init__( | ||
self, | ||
nu=0.5, | ||
kernel="rbf", | ||
degree=3, | ||
gamma="scale", | ||
coef0=0.0, | ||
tol=0.001, | ||
shrinking=True, | ||
cache_size=200, | ||
verbose=False, | ||
max_iter=-1, | ||
window_size: int = 10, | ||
stride: int = 1, | ||
): | ||
super().__init__(axis=0) | ||
self.nu = nu | ||
self.kernel = kernel | ||
self.degree = degree | ||
self.gamma = gamma | ||
self.coef0 = coef0 | ||
self.tol = tol | ||
self.shrinking = shrinking | ||
self.cache_size = cache_size | ||
self.verbose = verbose | ||
self.max_iter = max_iter | ||
self.window_size = window_size | ||
self.stride = stride | ||
|
||
def _fit(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> "OneClassSVM": | ||
self._check_params(X) | ||
|
||
_X, _ = sliding_windows( | ||
X, window_size=self.window_size, stride=self.stride, axis=0 | ||
) | ||
self._inner_fit(_X) | ||
|
||
return self | ||
|
||
def _check_params(self, X: np.ndarray) -> None: | ||
if self.window_size < 1 or self.window_size > X.shape[0]: | ||
raise ValueError( | ||
"The window size must be at least 1 and at most the length of the " | ||
"time series." | ||
) | ||
|
||
if self.stride < 1 or self.stride > self.window_size: | ||
raise ValueError( | ||
"The stride must be at least 1 and at most the window size." | ||
) | ||
|
||
def _inner_fit(self, X: np.ndarray) -> None: | ||
self.estimator_ = OCSVM( | ||
nu=self.nu, | ||
kernel=self.kernel, | ||
degree=self.degree, | ||
gamma=self.gamma, | ||
coef0=self.coef0, | ||
tol=self.tol, | ||
shrinking=self.shrinking, | ||
cache_size=self.cache_size, | ||
verbose=self.verbose, | ||
max_iter=self.max_iter, | ||
) | ||
self.estimator_.fit(X) | ||
|
||
def _predict(self, X) -> np.ndarray: | ||
|
||
_X, padding = sliding_windows( | ||
X, window_size=self.window_size, stride=self.stride, axis=0 | ||
) | ||
|
||
point_anomaly_scores = self._inner_predict(_X, padding) | ||
|
||
return point_anomaly_scores | ||
|
||
def _fit_predict(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> np.ndarray: | ||
self._check_params(X) | ||
_X, padding = sliding_windows( | ||
X, window_size=self.window_size, stride=self.stride, axis=0 | ||
) | ||
self._inner_fit(_X) | ||
point_anomaly_scores = self._inner_predict(_X, padding) | ||
return point_anomaly_scores | ||
|
||
def _inner_predict(self, X: np.ndarray, padding: int) -> np.ndarray: | ||
|
||
anomaly_scores = self.estimator_.score_samples(X) | ||
|
||
point_anomaly_scores = reverse_windowing( | ||
anomaly_scores, self.window_size, np.nanmean, self.stride, padding | ||
) | ||
|
||
point_anomaly_scores = (point_anomaly_scores - point_anomaly_scores.min()) / ( | ||
point_anomaly_scores.max() - point_anomaly_scores.min() | ||
) | ||
|
||
return point_anomaly_scores |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
"""Tests for the OneClassSVM anomaly detector.""" | ||
|
||
import numpy as np | ||
import pytest | ||
from sklearn.utils import check_random_state | ||
|
||
from aeon.anomaly_detection import OneClassSVM | ||
|
||
|
||
def test_one_class_svm_univariate(): | ||
"""Test OneClassSVM univariate output.""" | ||
rng = check_random_state(seed=2) | ||
series = rng.normal(size=(100,)) | ||
series[50:58] -= 5 | ||
|
||
ad = OneClassSVM(window_size=10, kernel="linear") | ||
pred = ad.fit_predict(series, axis=0) | ||
|
||
assert pred.shape == (100,) | ||
assert pred.dtype == np.float64 | ||
assert 50 <= np.argmax(pred) <= 58 | ||
|
||
|
||
def test_one_class_svm_multivariate(): | ||
"""Test OneClassSVM multivariate output.""" | ||
rng = check_random_state(seed=2) | ||
series = rng.normal(size=(100, 3)) | ||
series[50:58, 0] -= 5 | ||
series[87:90, 1] += 0.1 | ||
|
||
ad = OneClassSVM(window_size=10, kernel="linear") | ||
pred = ad.fit_predict(series, axis=0) | ||
|
||
assert pred.shape == (100,) | ||
assert pred.dtype == np.float64 | ||
assert 50 <= np.argmax(pred) <= 58 | ||
|
||
|
||
def test_one_class_svm_incorrect_input(): | ||
"""Test OneClassSVM incorrect input.""" | ||
rng = check_random_state(seed=2) | ||
series = rng.normal(size=(100,)) | ||
|
||
with pytest.raises(ValueError, match="The window size must be at least 1"): | ||
ad = OneClassSVM(window_size=0) | ||
ad.fit_predict(series) | ||
with pytest.raises(ValueError, match="The stride must be at least 1"): | ||
ad = OneClassSVM(stride=0) | ||
ad.fit_predict(series) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -80,3 +80,4 @@ Detectors | |
PyODAdapter | ||
STRAY | ||
STOMP | ||
OneClassSVM |