Skip to content

In the Linux kernel, the following vulnerability has been...

Moderate severity Unreviewed Published Jun 19, 2024 to the GitHub Advisory Database • Updated Oct 31, 2024

Package

No package listedSuggest a package

Affected versions

Unknown

Patched versions

Unknown

Description

In the Linux kernel, the following vulnerability has been resolved:

audit: improve robustness of the audit queue handling

If the audit daemon were ever to get stuck in a stopped state the
kernel's kauditd_thread() could get blocked attempting to send audit
records to the userspace audit daemon. With the kernel thread
blocked it is possible that the audit queue could grow unbounded as
certain audit record generating events must be exempt from the queue
limits else the system enter a deadlock state.

This patch resolves this problem by lowering the kernel thread's
socket sending timeout from MAX_SCHEDULE_TIMEOUT to HZ/10 and tweaks
the kauditd_send_queue() function to better manage the various audit
queues when connection problems occur between the kernel and the
audit daemon. With this patch, the backlog may temporarily grow
beyond the defined limits when the audit daemon is stopped and the
system is under heavy audit pressure, but kauditd_thread() will
continue to make progress and drain the queues as it would for other
connection problems. For example, with the audit daemon put into a
stopped state and the system configured to audit every syscall it
was still possible to shutdown the system without a kernel panic,
deadlock, etc.; granted, the system was slow to shutdown but that is
to be expected given the extreme pressure of recording every syscall.

The timeout value of HZ/10 was chosen primarily through
experimentation and this developer's "gut feeling". There is likely
no one perfect value, but as this scenario is limited in scope (root
privileges would be needed to send SIGSTOP to the audit daemon), it
is likely not worth exposing this as a tunable at present. This can
always be done at a later date if it proves necessary.

References

Published by the National Vulnerability Database Jun 19, 2024
Published to the GitHub Advisory Database Jun 19, 2024
Last updated Oct 31, 2024

Severity

Moderate

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Local
Attack complexity
Low
Privileges required
High
User interaction
None
Scope
Unchanged
Confidentiality
None
Integrity
None
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H

EPSS score

0.042%
(5th percentile)

Weaknesses

CVE ID

CVE-2021-47603

GHSA ID

GHSA-xfpp-3cjf-2x3v

Source code

No known source code

Dependabot alerts are not supported on this advisory because it does not have a package from a supported ecosystem with an affected and fixed version.

Learn more about GitHub language support

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.