-
Notifications
You must be signed in to change notification settings - Fork 1.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
test: [RLOS2023] Add new e2e test framework for vw (#4644)
* intro notebook * test: [RLOS_2023][WIP] updated test for regression weight (#4600) * test: add test for regression weight * test: make test more reusable by using json to specify pytest * test: minor fix on naming * test: add and option to python json test * test: [RLOS_2023] test for contextual bandit (#4612) * test: add basic cb test and configuration * test: add shared context data generation * add test for cb_explore_adf * test: dynamically create pytest test case * test: give fixed reward function signature * test: [RLOS_2023] [WIP] Support + and * expression for grids (#4618) * test: add basic cb test and configuration * test: add shared context data generation * add test for cb_explore_adf * test: dynamically create pytest test case * test: give fixed reward function signature * test: support + and * expression for grids * fix empty expression bugs * test: [RLOS2023] [WIP] add more arguments for reg&cb tests (#4619) * test: add more arguments for reg&cb tests * test: fix minor bug in generate expression & add loss funcs to tests * test: [RLOS2023] [WIP] add classification test (#4623) * test: add more arguments for reg&cb tests * test: fix minor bug in generate expression & add loss funcs to tests * test: add test for classification * test: organize test framework structure (#4624) * test: [RLOS2023][WIP] add option for storing output and grid language redefinition (#4627) * test: redesign grid lang * test: add option for store output * test: change list to dict for config vars * test: [RLOS2023] add test for slate (#4629) * test: add test for slate * test: test cleanup and slate test update * test: minor cleanup and change assert_loss function to equal instead of lower * test: [RLOS2023] add test for cb with continous action (#4630) * test: add test for slate * test: test cleanup and slate test update * test: minor cleanup and change assert_loss function to equal instead of lower * test: add test for cb with continous action * modify blocker testcase * test: [RLOS2023] clean for e2e testing framework v2 (#4633) * test: clean for e2e test v2 * test:change seed to same value for all tests * test: add datagen driver (#4638) * python black * python black 2 * minor demo cleanup --------- Co-authored-by: Alexey Taymanov <[email protected]> Co-authored-by: Alexey Taymanov <[email protected]>
- Loading branch information
1 parent
1c5fedf
commit ba83f62
Showing
24 changed files
with
1,919 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,328 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Helpers" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def read(path):\n", | ||
" with open(path) as f:\n", | ||
" print(\"\".join(f.readlines()))" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Regression" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Let's generate data of the following form: <br>\n", | ||
"Every example has single namespace 'f' with single feature 'x' in it <br>\n", | ||
"Target function is $$\\hat{y} = 2x + 1$$\n", | ||
"And we are learning weights $w$, $b$ for $$y=wx+b$$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"\n", | ||
"with open(\"regression1.txt\", \"w\") as f:\n", | ||
" for i in range(1000):\n", | ||
" x = np.random.rand()\n", | ||
" y = 2 * x + 1\n", | ||
" f.write(f\"{y} |f x:{x}\\n\")" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Simplest execution" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!vw -d regression1.txt" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Output more artifacts\n", | ||
"-p - predictions <br>\n", | ||
"--invert_hash - model in readable format <br>\n", | ||
"-f - model in binary format (consumable by vw)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!vw -d regression1.txt -p regression1.pred --invert_hash regression1.model.txt -f regression1.model.bin" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"We can look at weights and see the $w$ and $b$ got close to expected 2 and 1 values" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"read(\"regression1.model.txt\")" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Do only predictions, no learning" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!vw -d regression1.txt -t" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!vw -d regression1.txt -t --learning_rate 10" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!vw -d regression1.txt -t -i regression1.model.bin" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Interactions" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Let's generate another dataset of the following form: <br>\n", | ||
"Every example has single namespace 'f' with single feature 'x' in it <br>\n", | ||
"Target function is $$\\hat{y} = x^2 + 1$$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"\n", | ||
"with open(\"regression2.txt\", \"w\") as f:\n", | ||
" for i in range(1000):\n", | ||
" x = np.random.rand() * 4\n", | ||
" y = x**2 + 1\n", | ||
" f.write(f\"{y} |f x:{x}\\n\")" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"We can see loss being far from zero if we stil try to learn $$y=wx+b$$ " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!vw -d regression2.txt --invert_hash regression2.model.txt" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"So let's try to learn $$y=w_1 x^2 + w_2 x + b$$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!vw -d regression2.txt --invert_hash regression2.model.txt --interactions ff" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"read(\"regression2.model.txt\")" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Contextual bandits" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"\n", | ||
"env = {\"Tom\": {\"sports\": 0, \"politics\": 1}, \"Anna\": {\"sports\": 1, \"politics\": 0}}\n", | ||
"\n", | ||
"users = [\"Tom\", \"Anna\"]\n", | ||
"content = [\"sports\", \"politics\"]\n", | ||
"\n", | ||
"with open(\"cb.txt\", \"w\") as f:\n", | ||
" for i in range(1000):\n", | ||
" user = users[np.random.randint(0, 2)]\n", | ||
" chosen = np.random.randint(0, 2)\n", | ||
" reward = env[user][content[chosen]]\n", | ||
"\n", | ||
" f.write(f\"shared |u {user}\\n\")\n", | ||
" f.write(f\"0:{-reward}:0.5 |a {content[chosen]}\\n\")\n", | ||
" f.write(f\"|a {content[(chosen + 1) % 2]}\\n\\n\")" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Let's try to learn to predict reward in the following form: $$r = w_1 I(user\\ is\\ Tom) + w_2 I(user\\ is\\ Anna) + w_3 I(topic\\ is\\ sports) + w_4 I(topic\\ is\\ politics) + b$$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!vw --cb_explore_adf -d cb.txt --invert_hash cb.model.txt" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"We can see that average reward is still around 0.5 which is the same as we would get answering randomly. This is expected since personalization is not captured in this form.\n", | ||
"Let's add interaction between 'u' and 'a' namespaces and try to learn function of the following form:\n", | ||
"$$\\begin{aligned}r = w_1 I(user\\ is\\ Tom) I(topic\\ is\\ sports) + w_2 I(user\\ is\\ Tom) I(topic\\ is\\ politics) +\\\\+ w_3 I(user\\ is\\ Anna) I(topic\\ is\\ sports) + w_4 I(user\\ is\\ Anna) I(topic\\ is\\ politics) +\\\\+ w_5 I(user\\ is\\ Tom) + w_6 I(user\\ is\\ Anna) +\\\\+ w_7 I(topic\\ is\\ sports) + w_8 I(topic\\ is\\ politics) + b\\end{aligned}$$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"!vw --cb_explore_adf -d cb.txt --invert_hash cb.model.txt --interactions ua" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"read(\"cb.model.txt\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.11" | ||
}, | ||
"orig_nbformat": 4 | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.