Skip to content

Commit

Permalink
Deloopings and Eilenberg-Mac Lane spaces (#1079)
Browse files Browse the repository at this point in the history
In this pull request we add:

- A definition of what it means for a pointed type to be deloopable
- A definition of what it means for an H-space to be deloopable
- A definition of Eilenberg-Mac Lane spaces

There were some universe level questions that one can ask about the type
of deloopings. One can show that the type of deloopings of `X` in
universe `l2` is equivalent to the type of deloopings of `X` in the
universe level of `X`. Showing the forward implication required me to do
some work on smallness of pointed types and higher groups, which is
included in this pull request.

Furthermore, the file about morphisms of H-spaces has been revamped, for
better formalization of the preservation of the coherence law. This was
needed for the notion of equivalence of H-spaces, which was prerequisite
to the notion of delooping of H-spaces.
  • Loading branch information
EgbertRijke authored Mar 23, 2024
1 parent cacce49 commit ae24502
Show file tree
Hide file tree
Showing 22 changed files with 1,846 additions and 286 deletions.
7 changes: 7 additions & 0 deletions src/foundation-core/small-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -195,6 +195,13 @@ pr1 (is-small-is-contr l H) = raise-unit l
pr2 (is-small-is-contr l H) = equiv-is-contr H is-contr-raise-unit
```

### The unit type is small with respect to any universe

```agda
is-small-unit : {l : Level} is-small l unit
is-small-unit = is-small-is-contr _ is-contr-unit
```

### Small types are closed under dependent pair types

```agda
Expand Down
13 changes: 13 additions & 0 deletions src/group-theory/groups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ open import group-theory.semigroups
open import lists.concatenation-lists
open import lists.lists

open import structured-types.h-spaces
open import structured-types.pointed-types
open import structured-types.pointed-types-equipped-with-automorphisms
```
Expand Down Expand Up @@ -158,10 +159,22 @@ module _
(x : type-Group) Id (mul-Group x unit-Group) x
right-unit-law-mul-Group = pr2 (pr2 is-unital-Group)

coherence-unit-laws-mul-Group :
left-unit-law-mul-Group unit-Group = right-unit-law-mul-Group unit-Group
coherence-unit-laws-mul-Group =
eq-is-prop (is-set-type-Group _ _)

pointed-type-Group : Pointed-Type l
pr1 pointed-type-Group = type-Group
pr2 pointed-type-Group = unit-Group

h-space-Group : H-Space l
pr1 h-space-Group = pointed-type-Group
pr1 (pr2 h-space-Group) = mul-Group
pr1 (pr2 (pr2 h-space-Group)) = left-unit-law-mul-Group
pr1 (pr2 (pr2 (pr2 h-space-Group))) = right-unit-law-mul-Group
pr2 (pr2 (pr2 (pr2 h-space-Group))) = coherence-unit-laws-mul-Group

has-inverses-Group :
is-group-is-unital-Semigroup semigroup-Group is-unital-Group
has-inverses-Group = pr2 is-group-Group
Expand Down
2 changes: 1 addition & 1 deletion src/group-theory/wild-representations-monoids.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ module _
( ( action-wild-representation-type-Monoid x) ∘
( action-wild-representation-type-Monoid y))
preserves-mul-action-wild-representation-type-Monoid =
preserves-mul-map-hom-Wild-Monoid
preserves-mul-hom-Wild-Monoid
( wild-monoid-Monoid M)
( endo-Wild-Monoid type-wild-representation-type-Monoid)
( hom-action-wild-representation-type-Monoid)
Expand Down
6 changes: 6 additions & 0 deletions src/higher-group-theory.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,10 @@ module higher-group-theory where
open import higher-group-theory.cartesian-products-higher-groups public
open import higher-group-theory.conjugation public
open import higher-group-theory.cyclic-higher-groups public
open import higher-group-theory.deloopable-groups public
open import higher-group-theory.deloopable-h-spaces public
open import higher-group-theory.deloopable-types public
open import higher-group-theory.eilenberg-mac-lane-spaces public
open import higher-group-theory.equivalences-higher-groups public
open import higher-group-theory.fixed-points-higher-group-actions public
open import higher-group-theory.free-higher-group-actions public
Expand All @@ -17,7 +21,9 @@ open import higher-group-theory.homomorphisms-higher-group-actions public
open import higher-group-theory.homomorphisms-higher-groups public
open import higher-group-theory.integers-higher-group public
open import higher-group-theory.iterated-cartesian-products-higher-groups public
open import higher-group-theory.iterated-deloopings-of-pointed-types public
open import higher-group-theory.orbits-higher-group-actions public
open import higher-group-theory.small-higher-groups public
open import higher-group-theory.subgroups-higher-groups public
open import higher-group-theory.symmetric-higher-groups public
open import higher-group-theory.transitive-higher-group-actions public
Expand Down
58 changes: 58 additions & 0 deletions src/higher-group-theory/deloopable-groups.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
# Deloopable groups

```agda
module higher-group-theory.deloopable-groups where
```

<details><summary>Imports</summary>

```agda
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import group-theory.groups

open import higher-group-theory.deloopable-h-spaces
```

</details>

## Idea

A {{#concept "delooping" Disambiguation="group" Agda=delooping-Group}} of a
[group](group-theory.groups.md) `G` is a
[delooping](higher-group-theory.deloopable-h-spaces.md) of the underlying
[H-space](structured-types.h-spaces.md) of `G`. In other words, a delooping of a
group `G` consists of a [higher group](higher-group-theory.higher-groups.md)
`H`, which is defined to be a [pointed](structured-types.pointed-types.md)
[connected](foundation.0-connected-types.md) type, equipped with an
[equivalence of H-spaces](structured-types.equivalences-h-spaces.md)
`G ≃ h-space-∞-Group H` from `G` to the underlying H-space of `H`.

## Definitions

### Deloopings of groups of a given universe level

```agda
module _
{l1 : Level} (l2 : Level) (G : Group l1)
where

delooping-Group-Level : UU (l1 ⊔ lsuc l2)
delooping-Group-Level = delooping-H-Space-Level l2 (h-space-Group G)
```

### Deloopings of groups

```agda
module _
{l1 : Level} (G : Group l1)
where

delooping-Group : UU (lsuc l1)
delooping-Group = delooping-Group-Level l1 G
```

## See also

- [Eilenberg-Mac Lane spaces](higher-group-theory.eilenberg-mac-lane-spaces.md)
68 changes: 68 additions & 0 deletions src/higher-group-theory/deloopable-h-spaces.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
# Deloopable H-spaces

```agda
module higher-group-theory.deloopable-h-spaces where
```

<details><summary>Imports</summary>

```agda
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import higher-group-theory.higher-groups

open import structured-types.equivalences-h-spaces
open import structured-types.h-spaces
```

</details>

## Idea

Consider an [H-space](structured-types.h-spaces.md) with underlying
[pointed type](structured-types.pointed-types.md) `(X , *)` and with
multiplication `μ` satisfying

```text
left-unit-law : (x : X) μ * x = x
right-unit-law : (x : X) μ x * = x
coh-unit-law : left-unit-law * = right-unit-law *.
```

A {{#concept "delooping" Disambiguation="H-space" Agda=delooping-H-Space}} of
the H-space `X` consists of an [∞-group](higher-group-theory.higher-groups.md)
`G` and an [equivalence of H-spaces](structured-types.equivalences-h-spaces.md)

```text
X ≃ h-space-∞-Group G.
```

## Definitions

### Deloopings of H-spaces of a given universe level

```agda
module _
{l1 : Level} (l2 : Level) (A : H-Space l1)
where

delooping-H-Space-Level : UU (l1 ⊔ lsuc l2)
delooping-H-Space-Level =
Σ (∞-Group l2) (λ G equiv-H-Space A (h-space-∞-Group G))
```

### Deloopings of H-spaces

```agda
module _
{l1 : Level} (A : H-Space l1)
where

delooping-H-Space : UU (lsuc l1)
delooping-H-Space = delooping-H-Space-Level l1 A
```

## See also

- [Deloopable groups](higher-group-theory.deloopable-groups.md)
Loading

0 comments on commit ae24502

Please sign in to comment.