-
Notifications
You must be signed in to change notification settings - Fork 71
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
7 changed files
with
835 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
269 changes: 269 additions & 0 deletions
269
src/category-theory/dependent-composition-operations-over-precategories.lagda.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,269 @@ | ||
# Dependent composition operations over precategories | ||
|
||
```agda | ||
module category-theory.dependent-composition-operations-over-precategories where | ||
``` | ||
|
||
<details><summary>Imports</summary> | ||
|
||
```agda | ||
open import category-theory.composition-operations-on-binary-families-of-sets | ||
open import category-theory.nonunital-precategories | ||
open import category-theory.precategories | ||
open import category-theory.set-magmoids | ||
|
||
open import foundation.cartesian-product-types | ||
open import foundation.dependent-identifications | ||
open import foundation.dependent-pair-types | ||
open import foundation.function-types | ||
open import foundation.identity-types | ||
open import foundation.iterated-dependent-product-types | ||
open import foundation.propositions | ||
open import foundation.sets | ||
open import foundation.transport-along-identifications | ||
open import foundation.truncated-types | ||
open import foundation.truncation-levels | ||
open import foundation.universe-levels | ||
``` | ||
|
||
</details> | ||
|
||
## Idea | ||
|
||
Given a [precategory](category-theory.precategories.md) `C`, a | ||
{{#concept "dependent composition structure" Disambiguation="over a precategory"}} | ||
`D` over `C` is a family of types `obj D` over `obj C` and a family of | ||
_hom-[sets](foundation-core.sets.md)_ | ||
|
||
```text | ||
hom D : hom C x y → obj D x → obj D y → Set | ||
``` | ||
|
||
for every pair `x y : obj C`, equipped with a | ||
{{#concept "dependent composition operation" Disambiguation="over a precategory" Agda=dependent-composition-operation-Precategory}} | ||
|
||
```text | ||
comp D : hom D g y' z' → hom D f x' y' → hom D (g ∘ f) x' z'. | ||
``` | ||
|
||
## Definitions | ||
|
||
### The type of dependent composition operations over a precategory | ||
|
||
```agda | ||
module _ | ||
{l1 l2 : Level} (C : Precategory l1 l2) | ||
where | ||
|
||
dependent-composition-operation-Precategory : | ||
{ l3 l4 : Level} | ||
( obj-D : obj-Precategory C → UU l3) → | ||
( hom-set-D : | ||
{x y : obj-Precategory C} | ||
(f : hom-Precategory C x y) | ||
(x' : obj-D x) (y' : obj-D y) → Set l4) → | ||
UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
dependent-composition-operation-Precategory obj-D hom-set-D = | ||
{x y z : obj-Precategory C} | ||
(g : hom-Precategory C y z) (f : hom-Precategory C x y) → | ||
{x' : obj-D x} {y' : obj-D y} {z' : obj-D z} → | ||
(g' : type-Set (hom-set-D g y' z')) (f' : type-Set (hom-set-D f x' y')) → | ||
type-Set (hom-set-D (comp-hom-Precategory C g f) x' z') | ||
``` | ||
|
||
### The predicate of being associative on dependent composition operations over a precategory | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 l4 : Level} (C : Precategory l1 l2) | ||
( obj-D : obj-Precategory C → UU l3) | ||
( hom-set-D : | ||
{x y : obj-Precategory C} | ||
(f : hom-Precategory C x y) (x' : obj-D x) (y' : obj-D y) → Set l4) | ||
( comp-hom-D : dependent-composition-operation-Precategory C obj-D hom-set-D) | ||
where | ||
|
||
is-associative-dependent-composition-operation-Precategory : | ||
UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
is-associative-dependent-composition-operation-Precategory = | ||
{x y z w : obj-Precategory C} | ||
(h : hom-Precategory C z w) | ||
(g : hom-Precategory C y z) | ||
(f : hom-Precategory C x y) | ||
{x' : obj-D x} {y' : obj-D y} {z' : obj-D z} {w' : obj-D w} | ||
(h' : type-Set (hom-set-D h z' w')) | ||
(g' : type-Set (hom-set-D g y' z')) | ||
(f' : type-Set (hom-set-D f x' y')) → | ||
dependent-identification | ||
( λ i → type-Set (hom-set-D i x' w')) | ||
( associative-comp-hom-Precategory C h g f) | ||
( comp-hom-D (comp-hom-Precategory C h g) f (comp-hom-D h g h' g') f') | ||
( comp-hom-D h (comp-hom-Precategory C g f) h' (comp-hom-D g f g' f')) | ||
|
||
is-prop-is-associative-dependent-composition-operation-Precategory : | ||
is-prop is-associative-dependent-composition-operation-Precategory | ||
is-prop-is-associative-dependent-composition-operation-Precategory = | ||
is-prop-iterated-implicit-Π 4 | ||
( λ x y z w → | ||
is-prop-iterated-Π 3 | ||
( λ h g f → | ||
is-prop-iterated-implicit-Π 4 | ||
( λ x' y' z' w' → | ||
is-prop-iterated-Π 3 | ||
( λ h' g' f' → | ||
is-set-type-Set | ||
( hom-set-D | ||
( comp-hom-Precategory C h (comp-hom-Precategory C g f)) | ||
( x') | ||
( w')) | ||
( tr | ||
( λ i → type-Set (hom-set-D i x' w')) | ||
( associative-comp-hom-Precategory C h g f) | ||
( comp-hom-D | ||
( comp-hom-Precategory C h g) | ||
( f) | ||
( comp-hom-D h g h' g') | ||
( f'))) | ||
( comp-hom-D | ||
( h) | ||
( comp-hom-Precategory C g f) | ||
( h') | ||
( comp-hom-D g f g' f')))))) | ||
|
||
is-associative-prop-dependent-composition-operation-Precategory : | ||
Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
pr1 is-associative-prop-dependent-composition-operation-Precategory = | ||
is-associative-dependent-composition-operation-Precategory | ||
pr2 is-associative-prop-dependent-composition-operation-Precategory = | ||
is-prop-is-associative-dependent-composition-operation-Precategory | ||
``` | ||
|
||
### The predicate of being unital on dependent composition operations over a precategory | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 l4 : Level} (C : Precategory l1 l2) | ||
( obj-D : obj-Precategory C → UU l3) | ||
( hom-set-D : | ||
{x y : obj-Precategory C} | ||
(f : hom-Precategory C x y) (x' : obj-D x) (y' : obj-D y) → Set l4) | ||
( comp-hom-D : dependent-composition-operation-Precategory C obj-D hom-set-D) | ||
( id-hom-D : | ||
{x : obj-Precategory C} (x' : obj-D x) → | ||
type-Set (hom-set-D (id-hom-Precategory C {x}) x' x')) | ||
where | ||
|
||
is-left-unit-dependent-composition-operation-Precategory : | ||
UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
is-left-unit-dependent-composition-operation-Precategory = | ||
{x y : obj-Precategory C} (f : hom-Precategory C x y) | ||
{x' : obj-D x} {y' : obj-D y} (f' : type-Set (hom-set-D f x' y')) → | ||
dependent-identification | ||
( λ i → type-Set (hom-set-D i x' y')) | ||
( left-unit-law-comp-hom-Precategory C f) | ||
( comp-hom-D (id-hom-Precategory C) f (id-hom-D y') f') | ||
( f') | ||
|
||
is-prop-is-left-unit-dependent-composition-operation-Precategory : | ||
is-prop is-left-unit-dependent-composition-operation-Precategory | ||
is-prop-is-left-unit-dependent-composition-operation-Precategory = | ||
is-prop-iterated-implicit-Π 2 | ||
( λ x y → | ||
is-prop-Π | ||
( λ f → | ||
is-prop-iterated-implicit-Π 2 | ||
( λ x' y' → | ||
is-prop-Π | ||
( λ f' → | ||
is-set-type-Set | ||
( hom-set-D f x' y') | ||
( tr | ||
( λ i → type-Set (hom-set-D i x' y')) | ||
( left-unit-law-comp-hom-Precategory C f) | ||
( comp-hom-D (id-hom-Precategory C) f (id-hom-D y') f')) | ||
( f'))))) | ||
|
||
is-left-unit-prop-dependent-composition-operation-Precategory : | ||
Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
pr1 is-left-unit-prop-dependent-composition-operation-Precategory = | ||
is-left-unit-dependent-composition-operation-Precategory | ||
pr2 is-left-unit-prop-dependent-composition-operation-Precategory = | ||
is-prop-is-left-unit-dependent-composition-operation-Precategory | ||
|
||
is-right-unit-dependent-composition-operation-Precategory : | ||
UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
is-right-unit-dependent-composition-operation-Precategory = | ||
{x y : obj-Precategory C} (f : hom-Precategory C x y) | ||
{x' : obj-D x} {y' : obj-D y} (f' : type-Set (hom-set-D f x' y')) → | ||
dependent-identification | ||
( λ i → type-Set (hom-set-D i x' y')) | ||
( right-unit-law-comp-hom-Precategory C f) | ||
( comp-hom-D f (id-hom-Precategory C) f' (id-hom-D x')) | ||
( f') | ||
|
||
is-prop-is-right-unit-dependent-composition-operation-Precategory : | ||
is-prop is-right-unit-dependent-composition-operation-Precategory | ||
is-prop-is-right-unit-dependent-composition-operation-Precategory = | ||
is-prop-iterated-implicit-Π 2 | ||
( λ x y → | ||
is-prop-Π | ||
( λ f → | ||
is-prop-iterated-implicit-Π 2 | ||
( λ x' y' → | ||
is-prop-Π | ||
( λ f' → | ||
is-set-type-Set | ||
( hom-set-D f x' y') | ||
( tr | ||
( λ i → type-Set (hom-set-D i x' y')) | ||
( right-unit-law-comp-hom-Precategory C f) | ||
( comp-hom-D f (id-hom-Precategory C) f' (id-hom-D x'))) | ||
( f'))))) | ||
|
||
is-right-unit-prop-dependent-composition-operation-Precategory : | ||
Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
pr1 is-right-unit-prop-dependent-composition-operation-Precategory = | ||
is-right-unit-dependent-composition-operation-Precategory | ||
pr2 is-right-unit-prop-dependent-composition-operation-Precategory = | ||
is-prop-is-right-unit-dependent-composition-operation-Precategory | ||
|
||
is-unit-dependent-composition-operation-Precategory : | ||
UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
is-unit-dependent-composition-operation-Precategory = | ||
( is-left-unit-dependent-composition-operation-Precategory) × | ||
( is-right-unit-dependent-composition-operation-Precategory) | ||
|
||
is-prop-is-unit-dependent-composition-operation-Precategory : | ||
is-prop is-unit-dependent-composition-operation-Precategory | ||
is-prop-is-unit-dependent-composition-operation-Precategory = | ||
is-prop-product | ||
( is-prop-is-left-unit-dependent-composition-operation-Precategory) | ||
( is-prop-is-right-unit-dependent-composition-operation-Precategory) | ||
|
||
is-unit-prop-dependent-composition-operation-Precategory : | ||
Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
pr1 is-unit-prop-dependent-composition-operation-Precategory = | ||
is-unit-dependent-composition-operation-Precategory | ||
pr2 is-unit-prop-dependent-composition-operation-Precategory = | ||
is-prop-is-unit-dependent-composition-operation-Precategory | ||
|
||
module _ | ||
{l1 l2 l3 l4 : Level} (C : Precategory l1 l2) | ||
( obj-D : obj-Precategory C → UU l3) | ||
( hom-set-D : | ||
{x y : obj-Precategory C} | ||
(f : hom-Precategory C x y) (x' : obj-D x) (y' : obj-D y) → Set l4) | ||
( comp-hom-D : dependent-composition-operation-Precategory C obj-D hom-set-D) | ||
where | ||
|
||
is-unital-dependent-composition-operation-Precategory : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
is-unital-dependent-composition-operation-Precategory = | ||
Σ ( {x : obj-Precategory C} (x' : obj-D x) → | ||
type-Set (hom-set-D (id-hom-Precategory C {x}) x' x')) | ||
( is-unit-dependent-composition-operation-Precategory C | ||
obj-D hom-set-D comp-hom-D) | ||
``` | ||
|
||
## See also | ||
|
||
- [Displayed precategories](category-theory.displayed-precategories.md) |
Oops, something went wrong.