Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Replace xy with tikz in subgroups.tex #180

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 66 additions & 12 deletions subgroups.tex
Original file line number Diff line number Diff line change
Expand Up @@ -59,8 +59,17 @@ \subsection{Subgroups as monomorphisms}
\label{ex:sigma2inSigma3}
\marginnote{
That $i:\Sigma_2\to\Sigma_3$ is a monomorphism can visualized as follows: if $\Sigma_3$ represent all symmetries of an equilateral triangle in the plane (with vertices $1$, $2$, $3$), then $i$ is represented by the inclusion of the symmetries leaving $3$ fixed; \ie reflection through the line marked with dots in the picture.
$$\xymatrix{&3\ar@{.}[dd]&\\&&\\
1\ar@{-}[uur]\ar@{-}[rr]&&2\ar@{-}[uul]}$$}
\[
\begin{tikzpicture}[scale=1.5]
\path (0:0) node (one) {$1$}
(0:2) node (two) {$2$}
(60:2) node (three) {$3$};
\draw (one) -- (two);
\draw (two) -- (three);
\draw (three) -- (one);
\draw[dotted] (three) -- (0:1);
\end{tikzpicture}
\]}
Consider the homomorphism $i:\Sigma_2\to\Sigma_3$ of permutation groups corresponding to sending $A:\BSG_2\defequi \FinSet_2$ to $A+\bn1:\BSG_3$.
%This is a monomorphism since $\US i:\USym\Sigma_2\to\USym\Sigma_3$ is an injection.
\end{example}
Expand All @@ -76,8 +85,18 @@ \subsection{Subgroups as monomorphisms}
\begin{lemma}
\label{lem:setofsubgroups}
Let $G$ be a group and $(H,i_H,!),(H',i_{H'},!):\typemono_G$ be two monomorphisms into $G$. The identity type $(H,i_H,!)\eqto{}(H',i_{H'},!)$ is equivalent to
\marginnote{$$\xymatrix{H\ar[rr]^f_\simeq\ar[dr]_{i_H}&&H'\ar[dl]^{i_{H'}}\\
&G&}$$}
\marginnote{
\[
\begin{tikzpicture}[scale=1.5]
\path (-1,0) node (H) {$H$}
(1,0) node (H') {$H'$}
(0,-1) node (G) {$G$};
\draw[->] (H) -- node[above] {$f$} node[below] {$\simeq$} (H');
\draw[->] (H) -- node[below left] {$i_H$} (G);
\draw[->] (H') -- node[below right] {$i_{H'}$} (G);
\end{tikzpicture}
\]
}
$$\sum_{f:\Hom(H,H')}\isEq(\US f)\times (i_{H'}\eqto{}i_H f)$$ and is a proposition.
In particular, the type $\typemono_G$ of monomorphisms into $G$ is a set.
\end{lemma}
Expand Down Expand Up @@ -293,9 +312,23 @@ \subsection{Kernels and cokernels}
\begin{xca}
Given a homomorphism $f:\Hom(G,G')$, prove that
\marginnote{Hint: consider the corresponding property of the preimage of $\Bf$.
$$\xymatrix{L\ar[drr]^h\ar@{.>}[dr]^{k}\ar[ddr]&&\\
&\Ker f\ar[r]_{\incl_{\ker f}}\ar[d]&G\ar[d]^f\\
&{1}\ar[r]&\,G'.}$$}
\[
\begin{tikzpicture}[scale=1.5]
\path (-1,1) node (L) {$L$}
(0,0) node (Ker) {$\Ker f$}
(1,0) node (G) {$G$}
(0,-1) node (one) {$1$}
(1,-1) node (G') {$G'$};
\draw[->,dotted] (L) -- node[above right] {$k$} (Ker);
\draw[->] (L) to[bend left] node[above right] {$h$} (G);
\draw[->] (L) to[bend right] (one);
\draw[->] (Ker) -- node[below] {$\incl_{\ker f}$} (G);
\draw[->] (Ker) -- (one);
\draw[->] (G) -- node[right] {$f$} (G');
\draw[->] (one) -- (G');
\end{tikzpicture}
\]
}
\begin{enumerate}
\item $f$ is a monomorphism if and only if the kernel is trivial
\item $f$ is an epimorphims if and only if the cokernel is contractible.
Expand All @@ -307,11 +340,32 @@ \subsection{Kernels and cokernels}
\end{xca}


The kernel, cokernel and image constructions satisfy a lot of important relations which we will review in a moment, but in our setup many of them are just complicated ways of interpreting the following fact about preimages (see the illustration\footnote{$$\xymatrix{
F_2^{-1}(x_1,p_2)\ar[r]^H_\simeq\ar[d]_{\fst}&f_1^{-1}(x_1)\ar[d]^{\fst}\ar[dl]_{F_1}&\\
(f_2f_1)^{-1}(x_2)\ar[r]^{\fst}\ar[d]^{F_2}&X_0\ar[r]^{f_2f_1}\ar[d]^{f_1}&X_2\ar@{=}[d]\\
f_2^{-1}(x_2)\ar[r]^{\fst}&X_1\ar[r]^{f_2}&X_2.}
$$} in the margin for an overview)
The kernel, cokernel and image constructions satisfy a lot of important relations which we will review in a moment, but in our setup many of them are just complicated ways of interpreting the following fact about preimages (see the illustration\footnote{
\[
\begin{tikzpicture}[scale=1.5]
\path (-.5,2) node (02) {$F_2^{-1}(x_1,p_2)$}
(1,2) node (12) {$f_1^{-1}(x_1)$}
(-.5,1) node (01) {$(f_2f_1)^{-1}(x_2)$}
(1,1) node (11) {$X_0$}
(2,1) node (21) {$X_2$}
(-.5,0) node (00) {$f_2^{-1}(x_2)$}
(1,0) node (10) {$X_1$}
(2,0) node (20) {$X_2$};
\draw[->]
(02) edge node[left] {$\fst$} (01)
(01) edge node[left] {$F_2$} (00)
(12) edge node[right] {$\fst$} (11)
(11) edge node[right] {$f_1$} (10)
(21) edge[-,double] (20)
(02) edge node[above] {$H$} node[below] {$\simeq$} (12)
(01) edge node[above] {$\fst$} (11)
(11) edge node[above] {$f_2f_1$} (21)
(00) edge node[above] {$\fst$} (10)
(10) edge node[above] {$f_2$} (20)
(12) edge node[above left] {$F_1$} (01);
\end{tikzpicture}
\]
} in the margin for an overview)
\begin{lemma}
\label{lem:fibersofcomposites}
Consider pointed functions $(f_1,p_1):(X_0,x_0)\to_*(X_1,x_1)$ and $(f_2,p_2):(X_1,x_1)\to_*(X_2,x_2)$ and the resulting functions
Expand Down