Skip to content

a collection of modern sparse (regularized) linear regression algorithms.

License

Notifications You must be signed in to change notification settings

Thomasillo/sparsereg

 
 

Repository files navigation

sparsereg

image image image image

sparsereg is a collection of modern sparse (regularized) regression algorithms.

Installation

pip install sparsereg

Citation

If you use sparsereg please consider a citation:

@misc{markus_quade_sparsereg,
  author       = {Markus Quade},
  title        = {sparsereg - collection of modern sparse regression algorithms},
  month        = feb,
  year         = 2018,
  doi          = {10.5281/zenodo.1173754},
  url          = {https://github.com/ohjeah/sparsereg}
}

Implemented algorithms

  • Mcconaghy, T. (2011). FFX: Fast, Scalable, Deterministic Symbolic Regression Technology. Genetic Programming Theory and Practice IX, 235-260. DOI: 10.1007/978-1-4614-1770-5_13
  • Brunton, Steven L., Joshua L. Proctor, and J. Nathan Kutz. "Discovering governing equations from data by sparse identification of nonlinear dynamical systems." Proceedings of the National Academy of Sciences 113.15 (2016): 3932-3937. DOI: 10.1073/pnas.1517384113
  • Bouchard, Kristofer E. "Bootstrapped Adaptive Threshold Selection for Statistical Model Selection and Estimation." arXiv preprint arXiv:1505.03511 (2015).
  • Ignacio Arnaldo, Una-May O'Reilly, and Kalyan Veeramachaneni. "Building Predictive Models via Feature Synthesis." In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO '15), Sara Silva (Ed.). ACM, New York, NY, USA, 983-990. DOI: 10.1145/2739480.2754693

About

a collection of modern sparse (regularized) linear regression algorithms.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%