Hyper parameters impact on a classifer and a regression model
Experiment the impact on the loss and accuracy by epoch for :
- loss functions : “hinge”, “squared_hinge”, “kullback_leibler_divergence”, “categorical_crossentropy”
- optimizers : SGD, RMSProp, AdaGrad, Adam
- Regularization :
- L2 : 0.1, 0.01, 0.001, 0.0001
- Dropout : 0.2, 0.3, 0.4, 0.5
- Batch Normalization
Experiment the impact on the loss and accuracy by epoch for :
- loss functions : “L1”, “L2”, “log-cosh”, “hubert”
- optimizers : SGD, RMSProp, AdaGrad, Adam
- Regularization :
- L2 : 0.1, 0.01, 0.001, 0.0001
- Dropout : 0.2, 0.3, 0.4, 0.5
- Batch Normalization
Please see the "src/hyper_parameters_analysis.html" or ".pdf" for the implementation and the results.