Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add train utilities #66

Merged
merged 2 commits into from
Jun 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
270 changes: 270 additions & 0 deletions descent/tests/test_train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,270 @@
import copy

import openff.interchange
import openff.interchange.models
import openff.toolkit
import pydantic
import pytest
import smee
import smee.converters
import torch

from descent.train import AttributeConfig, ParameterConfig, Trainable, _PotentialKey


@pytest.fixture()
def mock_ff() -> smee.TensorForceField:
interchange = openff.interchange.Interchange.from_smirnoff(
openff.toolkit.ForceField("openff-2.0.0.offxml", load_plugins=True),
openff.toolkit.Molecule.from_smiles("CC").to_topology(),
)

ff, _ = smee.converters.convert_interchange(interchange)

# check the force field matches when the tests were written.
assert ff.potentials_by_type["vdW"].attribute_cols == (
"scale_12",
"scale_13",
"scale_14",
"scale_15",
"cutoff",
"switch_width",
)

assert ff.potentials_by_type["vdW"].parameter_cols == ("epsilon", "sigma")

expected_vdw_ids = ["[#6X4:1]", "[#1:1]-[#6X4]"]
vdw_ids = [key.id for key in ff.potentials_by_type["vdW"].parameter_keys]
assert vdw_ids == expected_vdw_ids

assert ff.potentials_by_type["Bonds"].parameter_cols == ("k", "length")

expected_bond_ids = ["[#6X4:1]-[#6X4:2]", "[#6X4:1]-[#1:2]"]
bond_ids = [key.id for key in ff.potentials_by_type["Bonds"].parameter_keys]
assert bond_ids == expected_bond_ids

return ff


@pytest.fixture()
def mock_parameter_configs(mock_ff):
return {
"vdW": ParameterConfig(
cols=["epsilon", "sigma"],
scales={"epsilon": 10.0, "sigma": 1.0},
limits={"epsilon": (0.0, None), "sigma": (0.0, None)},
include=[mock_ff.potentials_by_type["vdW"].parameter_keys[0]],
),
"Bonds": ParameterConfig(
cols=["length"],
scales={"length": 1.0},
limits={"length": (0.1, 0.7)},
exclude=[mock_ff.potentials_by_type["Bonds"].parameter_keys[0]],
),
}


@pytest.fixture()
def mock_attribute_configs():
return {
"vdW": AttributeConfig(
cols=["scale_14"],
scales={"scale_14": 0.1},
limits={"scale_14": (0.0, None)},
)
}


class TestAttributeConfig:
def test_validate_keys_scale(self):
with pytest.raises(
pydantic.ValidationError, match="cannot scale non-trainable parameters"
):
AttributeConfig(cols=["scale_14"], scales={"scale_15": 0.1})

def test_validate_keys_limits(self):
with pytest.raises(
pydantic.ValidationError, match="cannot clamp non-trainable parameters"
):
AttributeConfig(cols=["scale_14"], limits={"scale_15": (0.1, 0.2)})


class TestParameterConfig:
def test_validate_include_exclude(self):
config = ParameterConfig(
cols=["sigma"],
include=[openff.interchange.models.PotentialKey(id="a")],
exclude=[openff.interchange.models.PotentialKey(id="b")],
)
assert isinstance(config.include[0], _PotentialKey)
assert isinstance(config.exclude[0], _PotentialKey)

with pytest.raises(
pydantic.ValidationError,
match="cannot include and exclude the same parameter",
):
ParameterConfig(
cols=["sigma"],
include=[openff.interchange.models.PotentialKey(id="a")],
exclude=[openff.interchange.models.PotentialKey(id="a")],
)


class TestTrainable:
def test_init(self, mock_ff, mock_parameter_configs, mock_attribute_configs):
potentials = mock_ff.potentials_by_type

trainable = Trainable(
mock_ff,
parameters=mock_parameter_configs,
attributes=mock_attribute_configs,
)

assert trainable._param_types == ["Bonds", "vdW"]
assert trainable._param_shapes == [(2, 2), (2, 2)]

assert trainable._attr_types == ["vdW"]
assert trainable._attr_shapes == [(6,)]

# values should be params then attrs (i.e. bond params, vdw params, vdw attrs)
assert trainable._values.shape == (14,)
assert torch.allclose(
trainable._values,
torch.cat(
[
potentials["Bonds"].parameters.flatten(),
potentials["vdW"].parameters.flatten(),
potentials["vdW"].attributes.flatten(),
]
),
)

# bond params: k, l, k, l where only second l is unfrozen
# vdw params: eps, sig, eps, sig where only first row is unfrozen
# vdw attrs: only scale_14 is unfrozen
expected_unfrozen_ids = torch.tensor([3, 4, 5, 10])
assert (trainable._unfrozen_idxs == expected_unfrozen_ids).all()

assert torch.allclose(
trainable._clamp_lower,
torch.tensor([0.1, 0.0, 0.0, 0.0], dtype=torch.float64),
)
assert torch.allclose(
trainable._clamp_upper,
torch.tensor([0.7, torch.inf, torch.inf, torch.inf], dtype=torch.float64),
)
assert torch.allclose(
trainable._scales,
torch.tensor([1.0, 10.0, 1.0, 0.1], dtype=torch.float64),
)

def test_to_values(self, mock_ff, mock_parameter_configs, mock_attribute_configs):
potentials = mock_ff.potentials_by_type

trainable = Trainable(
mock_ff,
parameters=mock_parameter_configs,
attributes=mock_attribute_configs,
)

vdw_params = potentials["vdW"].parameters.flatten()
vdw_attrs = potentials["vdW"].attributes.flatten()

expected_values = torch.tensor(
[
0.7, # length clamped
vdw_params[0] * 10.0, # scale eps
vdw_params[1], # sigma
vdw_attrs[2] * 0.1, # scale_14
]
)
values = trainable.to_values()

assert values.shape == expected_values.shape
assert torch.allclose(values, expected_values)

def test_to_force_field_no_op(
self, mock_ff, mock_parameter_configs, mock_attribute_configs
):
mock_parameter_configs["Bonds"].limits = {"length": (0.1, None)}

ff_initial = copy.deepcopy(mock_ff)

trainable = Trainable(
mock_ff,
parameters=mock_parameter_configs,
attributes=mock_attribute_configs,
)

ff = trainable.to_force_field(trainable.to_values())

assert (
ff.potentials_by_type["vdW"].parameters.shape
== ff_initial.potentials_by_type["vdW"].parameters.shape
)
assert torch.allclose(
ff.potentials_by_type["vdW"].parameters,
ff_initial.potentials_by_type["vdW"].parameters,
)

assert (
ff.potentials_by_type["vdW"].attributes.shape
== ff_initial.potentials_by_type["vdW"].attributes.shape
)
assert torch.allclose(
ff.potentials_by_type["vdW"].attributes,
ff_initial.potentials_by_type["vdW"].attributes,
)

assert (
ff.potentials_by_type["Bonds"].parameters.shape
== ff_initial.potentials_by_type["Bonds"].parameters.shape
)
assert torch.allclose(
ff.potentials_by_type["Bonds"].parameters,
ff_initial.potentials_by_type["Bonds"].parameters,
)

def test_to_force_field_clamp(
self, mock_ff, mock_parameter_configs, mock_attribute_configs
):
ff_initial = copy.deepcopy(mock_ff)

trainable = Trainable(
mock_ff,
parameters=mock_parameter_configs,
attributes=mock_attribute_configs,
)

ff = trainable.to_force_field(trainable.to_values())

expected_bond_params = ff_initial.potentials_by_type["Bonds"].parameters.clone()
expected_bond_params[1, 1] = 0.7

assert (
ff.potentials_by_type["Bonds"].parameters.shape
== expected_bond_params.shape
)
assert torch.allclose(
ff.potentials_by_type["Bonds"].parameters, expected_bond_params
)

def test_clamp(self, mock_ff, mock_parameter_configs, mock_attribute_configs):
potentials = mock_ff.potentials_by_type

trainable = Trainable(
mock_ff,
parameters=mock_parameter_configs,
attributes=mock_attribute_configs,
)

vdw_params = potentials["vdW"].parameters.flatten()
vdw_attrs = potentials["vdW"].attributes.flatten()

expected_values = torch.tensor([0.7, 0.0, vdw_params[1], vdw_attrs[2] * 0.1])
values = trainable.clamp(
torch.tensor([2.0, -1.0, vdw_params[1], vdw_attrs[2] * 0.1])
)

assert values.shape == expected_values.shape
assert torch.allclose(values, expected_values)
Loading
Loading