You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
echolocatoR fails to find module scipy. I get the error "ModuleNotFoundError: No module named 'scipy'" when extracting Linkage Disequilibrium. I am running the latest version of echolocatoR, v2.0.3. Any advice would be much appreciated!
2. Reproducible example
Code
#Map column names in summary statscolumnsnames=echodata::construct_colmap(munged=FALSE,
CHR="CHR", POS="POS",
SNP="SNP", P="pvalue",
Effect="beta", StdErr="SE",
A1="A1", A2="A2", Freq="freq",
N="N")
#Fine mappingresults<-echolocatoR::finemap_loci(
topSNPs=topSNPs,
loci=topSNPs$Locus,
LD_reference="UKB", #using UK Biobank for LD reference paneldataset_name="mortality_GWAS",
fullSS_genome_build="hg19",
case_control=FALSE,
finemap_methods= c("ABF","SUSIE","FINEMAP"),
force_new_subset=TRUE,
force_new_LD=TRUE,
force_new_finemap=TRUE,
# SNP filtersbp_distance=1000000, #distance around the lead SNP to include (1Mb, +/- 500kb)min_MAF=0.001,
# Munge full sumstats firstmunged=FALSE,
fullSS_path="/Users/manuela/Documents/Work/survival_GWAS/echolocatoR/summary_stats/mortalityGWAS_summaryStats_forMunge.txt",
colmap=columnsnames,
#Plot optionsplot_types= c("fancy"), #in addition to GWAS and fine mapping tracks, plot XGR annotation tracks - XGR, Roadmap, Nott2019show_plot=TRUE,
zoom= c("1x", "4x", "10x"))
Console output
[1] "+ Assigning Gene and Locus independently."
Standardising column headers.
First line of summary statistics file:
SNP CHR POS P Effect StdErr Freq A1 A2 N Locus Gene
Returning unmapped column names without making them uppercase.
+ Mapping colnames from MungeSumstats ==> echolocatoR
┌────────────────────────────────────────────┐
│ │
│ )))> 🦇 ANKRD55 [locus 1 / 10] 🦇 <((( │
│ │
└────────────────────────────────────────────┘
──────────────────────────────────────────────────────────────────────────────────
── Step 1 ▶▶▶ Query 🔎 ───────────────────────────────────────────────────────────
──────────────────────────────────────────────────────────────────────────────────
+ Query Method: tabix
Constructing GRanges query using min/max ranges within a single chromosome.
query_dat is already a GRanges object. Returning directly.
========= echotabix::convert =========
Converting full summary stats file to tabix format for fast querying.
Inferred format: 'table'
Explicit format: 'table'
Inferring comment_char from tabular header: 'CHR'
Determining chrom type from file header.
Chromosome format: 1
Detecting column delimiter.
Identified column separator: \t
Sorting rows by coordinates via bash.
Searching for header row with grep.
( grep ^'CHR' .../mortalityGWAS_summaryStats_forMunge.txt; grep
-v ^'CHR' .../mortalityGWAS_summaryStats_forMunge.txt | sort
-k1,1n
-k2,2n ) > .../file16c12683ada49_sorted.tsv
Constructing outputs
Using existing bgzipped file: /Users/manuela/Documents/Work/survival_GWAS/echolocatoR/summary_stats/mortalityGWAS_summaryStats_forMunge.txt.bgz
Set force_new=TRUE to override this.
Tabix-indexing file using: Rsamtools
Data successfully converted to bgzip-compressed, tabix-indexed format.
========= echotabix::query =========
query_dat is already a GRanges object. Returning directly.
Inferred format: 'table'
Querying tabular tabix file using: Rsamtools.
Checking query chromosome style is correct.
Chromosome format: 1
Retrieving data.
Converting query results to data.table.
Processing query: 5:54533638-56533638
Adding 'query' column to results.
Retrieved data with 6,058 rows
Saving query ==> /var/folders/gs/pbd9rgqs6jg963j_g70phh3h0000gn/T//RtmpsoB6CR/results/GWAS/mortality_GWAS/ANKRD55/ANKRD55_mortality_GWAS_subset.tsv.gz
+ Query: 6,058 SNPs x 15 columns.
Standardizing summary statistics subset.
Standardizing main column names.
++ Preparing A1,A1 cols
++ Preparing MAF,Freq cols.
++ Inferring MAF from frequency column.
++ Removing SNPs with MAF== 0 | NULL | NA or >1.
++ Preparing N_cases,N_controls cols.
++ Preparing proportion_cases col.
++ proportion_cases not included in data subset.
Preparing sample size column (N).
Using existing 'N' column.
+ Imputing t-statistic from Effect and StdErr.
+ leadSNP missing. Assigning new one by min p-value.
++ Ensuring Effect,StdErr,P are numeric.
++ Ensuring 1 SNP per row and per genomic coordinate.
++ Removing extra whitespace
+ Standardized query: 6,058 SNPs x 18 columns.
++ Saving standardized query ==> /var/folders/gs/pbd9rgqs6jg963j_g70phh3h0000gn/T//RtmpsoB6CR/results/GWAS/mortality_GWAS/ANKRD55/ANKRD55_mortality_GWAS_subset.tsv.gz
──────────────────────────────────────────────────────────────────────────────────
── Step 2 ▶▶▶ Extract Linkage Disequilibrium 🔗 ──────────────────────────────────
──────────────────────────────────────────────────────────────────────────────────
LD_reference identified as: ukb.
Using UK Biobank LD reference panel.
+ UKB LD file name: chr5_54000001_57000001
Downloading full .gz/.npz UKB files and saving to disk.
echoconda:: conda already installed.
Retrieving conda env name from yaml: echoR_mini
echoconda:: Conda environment already exists: echoR_mini
Searching for 1 package(s) across 1 conda environment(s).
Listing all packages in environment: echoR_mini
1 unique package(s) found across 1 conda environment(s).
Downloading with axel [1 thread(s)]: https://data.broadinstitute.org/alkesgroup/UKBB_LD/chr5_54000001_57000001.gz ==> /var/folders/gs/pbd9rgqs6jg963j_g70phh3h0000gn/T//RtmpsoB6CR/results/GWAS/mortality_GWAS/ANKRD55/LD/chr5_54000001_57000001.gz
+ Overwriting pre-existing file.
axel download successful.
Time difference of 4.1 secs
echoconda:: conda already installed.
Retrieving conda env name from yaml: echoR_mini
echoconda:: Conda environment already exists: echoR_mini
Searching for 1 package(s) across 1 conda environment(s).
Listing all packages in environment: echoR_mini
1 unique package(s) found across 1 conda environment(s).
Downloading with axel [1 thread(s)]: https://data.broadinstitute.org/alkesgroup/UKBB_LD/chr5_54000001_57000001.npz ==> /var/folders/gs/pbd9rgqs6jg963j_g70phh3h0000gn/T//RtmpsoB6CR/results/GWAS/mortality_GWAS/ANKRD55/LD/chr5_54000001_57000001.npz
+ Overwriting pre-existing file.
axel download successful.
Time difference of 15.7 secs
ModuleNotFoundError: No module named 'scipy'
Locus ANKRD55 complete in: 1.28 min
1. Bug description
echolocatoR fails to find module scipy. I get the error "ModuleNotFoundError: No module named 'scipy'" when extracting Linkage Disequilibrium. I am running the latest version of echolocatoR, v2.0.3. Any advice would be much appreciated!
2. Reproducible example
Code
Console output
3. Session info
The text was updated successfully, but these errors were encountered: