-
Notifications
You must be signed in to change notification settings - Fork 0
Home
Welcome to the diffsplicing wiki!
Here you can find a brief manual for using our R and Matlab codes in order to reproduce the results in our paper titled "Analysis of differential splicing suggests different modes of short-term splicing regulation".
bowtie-build -f --ntoa ref_transcriptome.fa ref_transcriptome
bowtie -q -v 3 --trim3 0 --trim5 0 --all -m 100 --threads 4 --sam ref_transcriptome *.fastq *.sam
Convert sam files into bam files with samtools (optional):
samtools view -hSb -o *.bam *.sam
parseAlignment *.bam --format=BAM -o *.prob --trSeqFile ref_transcriptome.fa --trInfoFile *.tr --verbose
estimateExpression *.prob -o * -t *.tr --outType RPKM -p parameters1.txt -P 2
Above process produces the *.rpkm file which contains 500 MCMC samples of the expression level estimates for each transcript included in the reference transcriptome file.
indexFile="tr_indices"
mcmcFileName="t1_r1.rpkm"
noSkip=7
start_line=1
end_line=15530
get_genelevels(indexFile,mcmcFileName,noSkip,start_line,end_line,sep="\t")
Output: t1_r1.rpkm_gene
mcmc_filenames_in=paste("t",rep(1:10),"_r1.rpkm_gene",sep="")
noSkip=0
noLines=3811
medianNorm(mcmc_filenames_in,noLines,noSkip)
Output: scaling_factors
indexFile="tr_indices"
mcmcFileName="t1_r1.rpkm"
noSkip=0
start_line=1
end_line=15530
scaling_ind=1 # change according to the mcmcFileName
getgene_trratios(indexFile,mcmcFileName,noSkip,start_line,end_line,scaling_ind,'scaling_factors',"\t")
Outputs: t1_r1.rpkm_gene_scaled, t1_r1.rpkm_reltr_scaled, t1_r1.rpkm_abstr_scaled
mcmc_filenames_in=list("t1_r1.rpkm_gene_scaled") # apply the same also for *_reltr_scaled and *_abstr_scaled
noLines=3811 # noLines=15530
noSkip=0
getMeanTecVar(mcmc_filenames_in,noLines,noSkip)
Outputs: t1_r1.rpkm_gene_scaled_MeanTecVar, t1_r1.rpkm_reltr_scaled_MeanTecVar, t1_r1.rpkm_abstr_scaled_MeanTecVar.