Skip to content

Fork of @KyleeCJ's code, the basis for their Cyto 2023 presentation

Notifications You must be signed in to change notification settings

OzetteTech/Cytometry_PreGating

 
 

Repository files navigation

Cytometry_PreGating

With the advancement in cytometric technology, there are a large number of cytometric data analysis tools available, but the problem of biological variance across subjects still have not been addressed in other softwares. This pipeline provides an effective way to address this problem and clean the cytometric data in excluding doublets and debris. The pipeline provides two detecting modes, which is single gate prediction and two gates sequential prediction.

Usage

  1. Put the raw tabular data into the project folder with name 'Raw_Data'
  2. If running the single gate prediction pipeline, run the Single_Gate.py with arguments of the gate name, two measurments in the csv file, and the device for pytorch implementation. If running the sequential gate prediction, run the Sequential_Gate.py with arguements of gates, two sets of measurements, and the device for pytorch implementation respectively.

Single prediction example command: python3 Single_Gate.py --g gate1_ir --x Ir191Di___191Ir_DNA1 --y Event_length --d mps

Sequential prediction example command: python3 Sequential_Gate.py --g1 gate1_ir --x1 Ir191Di___191Ir_DNA1 --y1 Event_length --g2 gate2_cd45 --x2 Ir193Di___193Ir_DNA2 --y2 Y89Di___89Y_CD45 --d mps

  1. To visualize the segmentation of the singlets in the data, we provide a Validation_Recon_Plot.py to reconstruct the predicted label for each cell to a binary map.

Single reconstruction prediction exmaple command: python3 Validation_Recon_Plot_Single.py --g gate1_ir --x Ir191Di___191Ir_DNA1 --y Event_length

Sequential reconstruction prediction exmaple command: python3 Validation_Recon_Plot_Sequential.py --g1 gate1_ir --x1 Ir191Di___191Ir_DNA1 --y1 Event_length --g2 gate2_cd45 --x2 Ir193Di___193Ir_DNA2 --y2 Y89Di___89Y_CD45

About

Fork of @KyleeCJ's code, the basis for their Cyto 2023 presentation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%