Skip to content

Official repository for "Task-Aware Information Routing from Common Representation Space in Lifelong Learning"

Notifications You must be signed in to change notification settings

NeurAI-Lab/TAMiL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TAMiL

Official repository for "Task-Aware Information Routing from Common Representation Space in Lifelong Learning", ICLR 2023

How to run?

  • python main.py --seed 10 --dataset seq-tinyimg --model tam --buffer_size 200 --load_best_args
    --tensorboard --pretext_task mse --notes 'experiment 1'

Setup

  • Use ./main.py to run experiments.
  • Use argument --load_best_args to use the best hyperparameters from the paper.
  • Use --evaluate to load and evaluate the model

Datasets

Class-Il / Task-IL settings

  • Sequential CIFAR-10
  • Sequential CIFAR-100
  • Sequential Tiny-ImageNet
  • Sequential Core50

Cite Our Work

If you find the code useful in your research, please consider citing our paper:

@inproceedings{
  bhat2023taskaware,
  title={Task-Aware Information Routing from Common Representation Space in Lifelong Learning},
  author={Prashant Shivaram Bhat and Bahram Zonooz and Elahe Arani},
  booktitle={The Eleventh International Conference on Learning Representations },
  year={2023},
  url={https://openreview.net/forum?id=-M0TNnyWFT5}
}

About

Official repository for "Task-Aware Information Routing from Common Representation Space in Lifelong Learning"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages