Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add-goddardrocket #183

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
82 changes: 82 additions & 0 deletions src/ADNLPProblems/goddardrocket.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
using ADNLPModels, NLPModels, NLPModelsIpopt, DataFrames, LinearAlgebra, Distances, SolverCore, Plots
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You can remove the using for the PR.


tmigot marked this conversation as resolved.
Show resolved Hide resolved
function goddardrocket(; n::Int = default_nvar, type::Val{T} = Val(Float64), kwargs...) where {T}
tmigot marked this conversation as resolved.
Show resolved Hide resolved

# Initialisation
# Constants
h_0 = T(1) # height initialization
v_0 = T(0) # speed initialization
m_0 = T(1) # mass initialization
g_0 = T(1) # gravity initialization

# Parameters

h_c = T(500) # Used for drag
v_c = T(620) # Used for drag
m_c = T(0.6) # Fraction of initial mass left at end

c = T(1/2 * (g_0*h_0)^2) # Thrust-to-fuel mass
m_f = T(m_0 * m_c) # final mass
T_max = T(3.5 * g_0 * m_0) # maximal rocket thrust
D_c = T(1/2 * v_c * (m_0/g_0)) # Drag scaling

function Objective(X :: Vector{S}) where {S}
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

function f(x)
S = eltype(x)

will give more flexibility


v = zeros(S, n) # velocity vector
h = zeros(S, n) # height vector
g = zeros(S, n) # gravity vector
m = zeros(S, n) # mass vector
D = zeros(S, n) # drag vector

v[1] = S(v_0) # velocity vector initialization
h[1] = S(h_0) # height vector initialization
g[1] = S(g_0) # gravity vector initialization
m[1] = S(m_0) # mass vector initialization
D[1] = S(D_c*(v_0^2)) # drag vector initialization
for k=2:n
m[k] = S(m[k - 1] - Δt * X[k - 1] / c) # update mass vector
v[k] = S(v[k - 1] + Δt *((X[k - 1] - D[k - 1]) / m[k - 1] - g[k - 1])) # update speed vector
h[k] = S(h[k - 1] + Δt * v[k - 1]) # update height vector
D[k] = S(D_c*(v[k]^2)*exp(-h_c*(h[k]-h_0)/h_0)) # update drag vector
g[k] = S(g_0*(h_0/h[k])^2) # update gravity vector
end
opt = -h[end]
return opt

end

function constraints(X :: Vector{S}) where {S}
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

function constraints(x)
S = eltype(x)

will give more flexibility


v = zeros(S, n)
h = zeros(S, n)
g = zeros(S, n)
m = zeros(S, n)
D = zeros(S, n)

v[1] = S(v_0) # velocity vector initialization
h[1] = S(h_0) # height vector initialization
g[1] = S(g_0) # gravity vector initialization
m[1] = S(m_0) # mass vector initialization
D[1] = S(D_c*(v_0^2)) # drag vector initialization
for k=2:n
m[k] = S(m[k - 1] - Δt * X[k - 1] / c)
v[k] = S(v[k - 1] + Δt *((X[k - 1] - D[k - 1]) / m[k - 1] - g[k - 1]))
h[k] = S(h[k - 1] + Δt * v[k - 1])
D[k] = S(D_c*(v[k]^2)*exp(-h_c*(h[k]-h_0)/h_0))
end
constraints = vcat(v, h .- h[1], m .- m_f) # constraint vector for velocity, height, mass, thrust
return constraints

end
Δt = T(1/(n-1)) # Indya, ce n'est pas 1/(n-1) à la place ?
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Δt = T(1/(n-1))

X0 = T_max/2 * ones(T, n)
lvar = zeros(T, n)
uvar = T_max/2 * ones(T, n)
lcon = zeros(T, 3 * n)
ucon = T[i ≤ 2n ? T(Inf) : ( T(m_0 - m_f)) for i=1:3n]

nlp = ADNLPModel(Objective, X0, lvar, uvar, constraints, lcon, ucon)
return nlp
tmigot marked this conversation as resolved.
Show resolved Hide resolved
end


105 changes: 105 additions & 0 deletions src/ADNLPProblems/minimalsurface.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
using Plots
using ADNLPModels, NLPModels, NLPModelsIpopt, DataFrames, LinearAlgebra, Distances, SolverCore, PyPlot

function minimalsurface(; n::Int = default_nvar, type::Val{T} = Val(Float64), kwargs...) where {T}

# domain definition
xmin = T(0.)
xmax = T(1.)
ymin = T(0.)
ymax = T(1.)

# Definition of the mesh
nx = 20 # number of points according to the direction x
ny = 20 # number of points according to the direction y


x_mesh = LinRange(xmin, xmax, nx) # coordinates of the mesh points x
y_mesh = LinRange(ymin, ymax, ny) # coordinates of the mesh points y

v_D = zeros(nx,ny) # Surface matrix initialization
for i in 1:nx
for j in 1:ny
v_D[i, j] = T(1 - (2 * x_mesh[i] - 1)^2)
end
end


function Objective(v)
v_reshape = reshape(v, (nx, ny)) # vector to matrix conversion
hx = T(1/nx) # step on the x axis
hy = T(1/ny) # step on the y axis
S = T(0.) # sum initialization
# Calculation of the gradient according to x
for i in 1:nx
for j in 1:ny
if i == 1
gi = T((v_reshape[i+1, j] - v_reshape[i, j])/hx)
elseif i == nx
gi = T((v_reshape[i, j] - v_reshape[i-1, j])/hx)
else
gi = T((v_reshape[i+1, j] - v_reshape[i, j])/(2 * hx))
end
# Calculation of the gradient according to x
if j == 1
gj = T((v_reshape[i, j+1] - v_reshape[i, j])/hy)
elseif j == ny
gj = T((v_reshape[i, j] - v_reshape[i, j-1])/hy)
else
gj = T((v_reshape[i, j+1] - v_reshape[i, j])/(2 * hy))
end

s = T(hx * hy * (sqrt(1 + (gi^2) +(gj)^2))) # Approximation of the derivative with the method of rectangles
S = S + s # Update the value of S
end
end
return(S)
end

function constraints(v)
v_reshape = reshape(v, (nx, ny)) # vector to matrix conversion
c = similar(v_reshape, nx*ny + 2*(nx +ny)) # creating a constraint vector
index = 1
v_L = zeros(T, nx,ny) # Creation of an obstacle called v_L
for i in 1:nx
for j in 1:ny
if norm(x_mesh[i]-(1/2)) ≤ 1/4 && norm(y_mesh[j]-(1/2)) ≤ 1/4
v_L[i, j] = T(1.) # Update the value of v_L according to the values ​​of x and y
end
end
end
for i in 1:nx
for j in 1:ny
c[index] = T(v_reshape[i, j] - v_L[i, j]) # Constraint that the surface must be above the obstruction
index = index + 1
end
end
for j in 1:ny
c[index] = T(v_reshape[1, j]) # Constraint: when x=1 or x=nx, the surface is set to 0
index = index + 1
c[index] = T(v_reshape[nx, j]) # Constraint: when x=1 or x=nx, the surface is set to 0
index = index + 1
end
for i in 1:nx
c[index] = T(v_reshape[i, 1] - 1 + (2 * i -1)^2) # Constraint: when y=1 or y=ny, the surface follows the function " 1 + (2 * x -1)^2 "
index = index + 1
c[index] = T(v_reshape[i, ny] - 1 + (2 * i -1)^2) # Constraint: when y=1 or y=ny, the surface follows the function " 1 + (2 * x -1)^2 "
index = index + 1

end
return c
end


lcon = zeros(T, nx * ny + 2 * nx + 2 * ny) # Lower bound all equal to 0
ucon = zeros(T, nx * ny + 2 * nx + 2 * ny) # Creation of the upper bound vector
ucon[1 : ny * nx] = Inf * ones(T, nx * ny) # first part equal to infinity
ucon[nx * ny + 1 : end] = zeros(T, 2 * nx + 2 * ny) # second part part equal to zero

v = vec(v_D) #convert to vector

nlp = ADNLPModel(Objective, v, constraints, lcon, ucon)
return nlp
end


25 changes: 25 additions & 0 deletions src/Meta/goddardrocket.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
goddardrocket_meta = Dict(
tmigot marked this conversation as resolved.
Show resolved Hide resolved
:nvar => 100,
:variable_nvar => true,
:ncon => 300,
:variable_ncon => true,
:minimize => true,
:name => "goddardrocket",
:has_equalities_only => false,
:has_inequalities_only => true,
:has_bounds => true,
:has_fixed_variables => false,
:objtype => :other,
:contype => :general,
:best_known_lower_bound => -Inf,
:best_known_upper_bound => Inf,
:is_feasible => missing,
:defined_everywhere => missing,
:origin => :unknown,
)
get_goddardrocket_nvar(; n::Integer = default_nvar, kwargs...) = 1 * n + 0
get_goddardrocket_ncon(; n::Integer = default_nvar, kwargs...) = 3 * n + 0
get_goddardrocket_nlin(; n::Integer = default_nvar, kwargs...) = 0
get_goddardrocket_nnln(; n::Integer = default_nvar, kwargs...) = 3 * n + 0
get_goddardrocket_nequ(; n::Integer = default_nvar, kwargs...) = 0
get_goddardrocket_nineq(; n::Integer = default_nvar, kwargs...) = 3 * n + 0
26 changes: 26 additions & 0 deletions src/Meta/minimalsurface.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
minimalsurface_meta = Dict(
:nvar => 400,
:variable_nvar => false,
:ncon => 480,
:variable_ncon => false,
:minimize => true,
:name => "minimalsurface",
:has_equalities_only => false,
:has_inequalities_only => false,
:has_bounds => false,
:has_fixed_variables => false,
:objtype => :other,
:contype => :general,
:best_known_lower_bound => -Inf,
:best_known_upper_bound => Inf,
:is_feasible => missing,
:defined_everywhere => missing,
:origin => :unknown,

)
get_minimalsurface_nvar(; n::Integer = default_nvar, kwargs...) = 400
get_minimalsurface_ncon(; n::Integer = default_nvar, kwargs...) = 480
get_minimalsurface_nlin(; n::Integer = default_nvar, kwargs...) = 0
get_minimalsurface_nnln(; n::Integer = default_nvar, kwargs...) = 480
get_minimalsurface_nequ(; n::Integer = default_nvar, kwargs...) = 80
get_minimalsurface_nineq(; n::Integer = default_nvar, kwargs...) = 400