-
Notifications
You must be signed in to change notification settings - Fork 32
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #3618 from JuliaReach/schillic/convert
Split `convert.jl` into smaller files
- Loading branch information
Showing
20 changed files
with
967 additions
and
948 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
""" | ||
convert(::Type{STAR}, P::AbstractPolyhedron{N}) where {N} | ||
Convert a polyhedral set to a star set represented as a lazy affine map. | ||
### Input | ||
- `STAR` -- target type | ||
- `P` -- polyhedral set | ||
### Output | ||
A star set. | ||
""" | ||
function convert(::Type{STAR}, P::AbstractPolyhedron{N}) where {N} | ||
n = dim(P) | ||
c = zeros(N, n) | ||
V = Matrix(one(N) * I, n, n) | ||
return AffineMap(V, P, c) | ||
end | ||
|
||
""" | ||
convert(::Type{STAR}, X::Star) | ||
Convert a star set to its equivalent representation as a lazy affine map. | ||
### Input | ||
- `STAR` -- target type | ||
- `X` -- star set | ||
### Output | ||
A star set. | ||
""" | ||
function Base.convert(::Type{STAR}, X::Star) | ||
return AffineMap(X.V, X.P, X.c) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
""" | ||
convert(::Type{CartesianProduct{N, Interval{N}, Interval{N}}}, | ||
H::AbstractHyperrectangle{N}) where {N} | ||
Convert a two-dimensional hyperrectangle to the Cartesian product of two | ||
intervals. | ||
### Input | ||
- `CartesianProduct` -- target type | ||
- `H` -- hyperrectangle | ||
### Output | ||
The Cartesian product of two intervals. | ||
""" | ||
function convert(::Type{CartesianProduct{N,Interval{N},Interval{N}}}, | ||
H::AbstractHyperrectangle{N}) where {N} | ||
@assert dim(H) == 2 "the hyperrectangle must be two-dimensional to " * | ||
"convert it to the Cartesian product of two intervals, but it is " * | ||
"$(dim(H))-dimensional; consider converting it to a " * | ||
"`CartesianProductArray{$N, Interval{$N}}` instead" | ||
I1 = Interval(low(H, 1), high(H, 1)) | ||
I2 = Interval(low(H, 2), high(H, 2)) | ||
return CartesianProduct(I1, I2) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
""" | ||
convert(::Type{CartesianProductArray{N, Interval{N}}}, | ||
H::AbstractHyperrectangle{N}) where {N} | ||
Convert a hyperrectangle to the Cartesian product array of intervals. | ||
### Input | ||
- `CartesianProductArray` -- target type | ||
- `H` -- hyperrectangle | ||
### Output | ||
The Cartesian product of a finite number of intervals. | ||
""" | ||
function convert(::Type{CartesianProductArray{N,Interval{N}}}, | ||
H::AbstractHyperrectangle{N}) where {N} | ||
Iarray = [Interval(low(H, i), high(H, i)) for i in 1:dim(H)] | ||
return CartesianProductArray(Iarray) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
# make a copy of the constraints | ||
Base.convert(::Type{HPolyhedron}, P::HPolytope) = HPolyhedron(copy(constraints_list(P))) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
# make a copy of the constraints | ||
Base.convert(::Type{HPolytope}, P::HPolyhedron) = HPolytope(copy(constraints_list(P))) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
function Base.convert(::Type{Hyperplane}, P::HPolyhedron; skip_check::Bool=false) | ||
# check that the number of constraints is fine | ||
if !skip_check && !ishyperplanar(P) | ||
throw(ArgumentError("the polyhedron is not hyperplanar: $P")) | ||
end | ||
|
||
# construct hyperplane from first constraint | ||
c1 = @inbounds first(constraints_list(P)) | ||
return Hyperplane(c1.a, c1.b) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
""" | ||
convert(::Type{Hyperrectangle}, cpa::CartesianProductArray{N, HN}) | ||
where {N, HN<:AbstractHyperrectangle} | ||
Convert the Cartesian product of a finite number of hyperrectangular sets to | ||
a single hyperrectangle. | ||
### Input | ||
- `Hyperrectangle` -- target type | ||
- `S` -- Cartesian product array of hyperrectangular set | ||
### Output | ||
A hyperrectangle. | ||
### Algorithm | ||
This implementation uses the `center` and `radius_hyperrectangle` methods of | ||
`AbstractHyperrectangle`. | ||
""" | ||
function convert(::Type{Hyperrectangle}, | ||
cpa::CartesianProductArray{N,HN}) where {N,HN<:AbstractHyperrectangle} | ||
n = dim(cpa) | ||
c = Vector{N}(undef, n) | ||
r = Vector{N}(undef, n) | ||
i = 1 | ||
@inbounds for block_set in cpa | ||
j = i + dim(block_set) - 1 | ||
c[i:j] = center(block_set) | ||
r[i:j] = radius_hyperrectangle(block_set) | ||
i = j + 1 | ||
end | ||
return Hyperrectangle(c, r) | ||
end | ||
|
||
""" | ||
convert(::Type{Hyperrectangle}, cp::CartesianProduct{N, HN1, HN2}) | ||
where {N, HN1<:AbstractHyperrectangle, HN2<:AbstractHyperrectangle} | ||
Convert the Cartesian product of two hyperrectangular sets to a single | ||
hyperrectangle. | ||
### Input | ||
- `Hyperrectangle` -- target type | ||
- `S` -- Cartesian product of two hyperrectangular sets | ||
### Output | ||
A hyperrectangle. | ||
### Algorithm | ||
The result is obtained by concatenating the center and radius of each | ||
hyperrectangle. This implementation uses the `center` and | ||
`radius_hyperrectangle` methods. | ||
""" | ||
function convert(::Type{Hyperrectangle}, | ||
cp::CartesianProduct{N,HN1,HN2}) where {N,HN1<:AbstractHyperrectangle, | ||
HN2<:AbstractHyperrectangle} | ||
X, Y = first(cp), second(cp) | ||
c = vcat(center(X), center(Y)) | ||
r = vcat(radius_hyperrectangle(X), radius_hyperrectangle(Y)) | ||
return Hyperrectangle(c, r) | ||
end | ||
|
||
""" | ||
convert(::Type{Hyperrectangle}, | ||
cpa::CartesianProductArray{N, IN}) where {N, IN<:Interval} | ||
Convert the Cartesian product of a finite number of intervals to a single | ||
hyperrectangle. | ||
### Input | ||
- `Hyperrectangle` -- target type | ||
- `S` -- Cartesian product array of intervals | ||
### Output | ||
A hyperrectangle. | ||
### Algorithm | ||
This implementation uses the `min` and `max` methods of `Interval` to reduce | ||
the allocations and improve performance (see LazySets#1143). | ||
""" | ||
function convert(::Type{Hyperrectangle}, | ||
cpa::CartesianProductArray{N,IN}) where {N,IN<:Interval} | ||
# since the sets are intervals, the dimension of cpa is its length | ||
n = length(array(cpa)) | ||
l = Vector{N}(undef, n) | ||
h = Vector{N}(undef, n) | ||
@inbounds for (i, Ii) in enumerate(array(cpa)) | ||
l[i] = min(Ii) | ||
h[i] = max(Ii) | ||
end | ||
return Hyperrectangle(; low=l, high=h) | ||
end | ||
|
||
""" | ||
convert(::Type{Hyperrectangle}, r::Rectification{N, AH}) | ||
where {N, AH<:AbstractHyperrectangle} | ||
Convert a rectification of a hyperrectangle to a hyperrectangle. | ||
### Input | ||
- `Hyperrectangle` -- target type | ||
- `r` -- rectification of a hyperrectangle | ||
### Output | ||
A `Hyperrectangle`. | ||
""" | ||
function convert(::Type{Hyperrectangle}, | ||
r::Rectification{N,AH}) where {N,AH<:AbstractHyperrectangle} | ||
return rectify(r.X) | ||
end | ||
|
||
function convert(::Type{Hyperrectangle}, Z::AbstractZonotope{N}) where {N} | ||
c = center(Z) | ||
n = length(c) | ||
r = zeros(N, n) | ||
@inbounds for cj in generators(Z) | ||
i = findfirst(!=(zero(N)), cj) | ||
if isnothing(i) | ||
continue | ||
end | ||
@assert isnothing(findfirst(!=(zero(N)), @view cj[(i + 1):end])) "the zonotope " * | ||
"is not hyperrectangular" | ||
r[i] += cj[i] # `+` because to allow for multiple generators in dimension i | ||
end | ||
return Hyperrectangle(c, r) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
""" | ||
convert(::Type{Interval}, r::Rectification{N, IN}) where {N, IN<:Interval} | ||
Convert a rectification of an interval to an interval. | ||
### Input | ||
- `Interval` -- target type | ||
- `r` -- rectification of an interval | ||
### Output | ||
An `Interval`. | ||
""" | ||
function convert(::Type{Interval}, | ||
r::Rectification{N,IN}) where {N,IN<:Interval} | ||
return Interval(rectify([min(r.X), max(r.X)])) | ||
end | ||
|
||
""" | ||
convert(::Type{Interval}, ms::MinkowskiSum{N, IT, IT}) where {N, IT<:Interval} | ||
Convert the Minkowski sum of two intervals to an interval. | ||
### Input | ||
- `Interval` -- target type | ||
- `ms` -- Minkowski sum of two intervals | ||
### Output | ||
An interval. | ||
""" | ||
function convert(::Type{Interval}, ms::MinkowskiSum{N,IT,IT}) where {N,IT<:Interval} | ||
return concretize(ms) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
""" | ||
convert(::Type{MinkowskiSumArray}, | ||
X::MinkowskiSum{N, ST, MinkowskiSumArray{N, ST}}) where {N, ST} | ||
Convert the Minkowski sum of a Minkowski sum array to a Minkowski sum array. | ||
### Input | ||
- `MinkowskiSumArray` -- target type | ||
- `X` -- Minkowski sum of a Minkowski sum array | ||
### Output | ||
A Minkowski sum array. | ||
""" | ||
function convert(::Type{MinkowskiSumArray}, | ||
X::MinkowskiSum{N,ST,MinkowskiSumArray{N,ST}}) where {N,ST} | ||
return MinkowskiSumArray(vcat(first(X), array(second(X)))) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
""" | ||
convert(::Type{SimpleSparsePolynomialZonotope}, Z::AbstractZonotope) | ||
Convert a zonotope to a simple sparse polynomial zonotope. | ||
### Input | ||
- `SimpleSparsePolynomialZonotope` -- target type | ||
- `Z` -- zonotopic set | ||
### Output | ||
A simple sparse polynomial zonotope. | ||
### Algorithm | ||
This method implements Proposition 3 in [1]. | ||
[1] Kochdumper, Althoff. *Sparse polynomial zonotopes - a novel set | ||
representation for reachability analysis*. 2021 | ||
""" | ||
function Base.convert(::Type{SimpleSparsePolynomialZonotope}, Z::AbstractZonotope) | ||
c = center(Z) | ||
G = genmat(Z) | ||
n = ngens(Z) | ||
E = Matrix(1 * I, n, n) | ||
return SimpleSparsePolynomialZonotope(c, G, E) | ||
end | ||
|
||
""" | ||
convert(::Type{SimpleSparsePolynomialZonotope}, SPZ::SparsePolynomialZonotope) | ||
Convert a sparse polynomial zonotope to simple sparse polynomial zonotope. | ||
### Input | ||
- `SimpleSparsePolynomialZonotope` -- target type | ||
- `SPZ` -- sparse polynomial zonotope | ||
### Output | ||
A simple sparse polynomial zonotope. | ||
### Algorithm | ||
The method implements Proposition 3.1.4 from [1]. | ||
[1] Kochdumper, Niklas. *Extensions of polynomial zonotopes and their application to | ||
verification of cyber-physical systems.* PhD diss., Technische Universität München, 2022. | ||
""" | ||
function Base.convert(::Type{SimpleSparsePolynomialZonotope}, SPZ::SparsePolynomialZonotope) | ||
c = center(SPZ) | ||
G = hcat(genmat_dep(SPZ), genmat_indep(SPZ)) | ||
n = ngens_indep(SPZ) | ||
E = cat(expmat(SPZ), Matrix(1 * I, n, n); dims=(1, 2)) | ||
return SimpleSparsePolynomialZonotope(c, G, E) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
function convert(::Type{Singleton}, | ||
cp::CartesianProduct{N,S1,S2}) where {N,S1<:AbstractSingleton, | ||
S2<:AbstractSingleton} | ||
return Singleton(vcat(element(first(cp)), element(second(cp)))) | ||
end |
Oops, something went wrong.