-
Notifications
You must be signed in to change notification settings - Fork 713
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
435 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
335 changes: 335 additions & 0 deletions
335
python/sparknlp/annotator/seq2seq/starcoder_transformer.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,335 @@ | ||
# Copyright 2017-2022 John Snow Labs | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Contains classes for the StarCoderTransformer.""" | ||
|
||
from sparknlp.common import * | ||
|
||
|
||
class StarCoderTransformer(AnnotatorModel, HasBatchedAnnotate, HasEngine): | ||
"""StarCoder2: The Versatile Code Companion. | ||
StarCoder2 is a Transformer model designed specifically for code generation and understanding. | ||
With 13 billion parameters, it builds upon the advancements of its predecessors and is trained | ||
on a diverse dataset that includes multiple programming languages. This extensive training | ||
allows StarCoder2 to support a wide array of coding tasks, from code completion to generation. | ||
StarCoder2 was developed to assist developers in writing and understanding code more efficiently, | ||
making it a valuable tool for various software development and data science tasks. | ||
Pretrained models can be loaded with :meth:`.pretrained` of the companion | ||
object: | ||
>>> starcoder2 = StarCoder2Transformer.pretrained() \\ | ||
... .setInputCols(["document"]) \\ | ||
... .setOutputCol("generation") | ||
The default model is ``"starcoder2-13b"``, if no name is provided. For available | ||
pretrained models please see the `Models Hub | ||
<https://sparknlp.org/models?q=starcoder2>`__. | ||
====================== ====================== | ||
Input Annotation types Output Annotation type | ||
====================== ====================== | ||
``DOCUMENT`` ``DOCUMENT`` | ||
====================== ====================== | ||
Parameters | ||
---------- | ||
configProtoBytes | ||
ConfigProto from tensorflow, serialized into byte array. | ||
minOutputLength | ||
Minimum length of the sequence to be generated, by default 0 | ||
maxOutputLength | ||
Maximum length of output text, by default 20 | ||
doSample | ||
Whether or not to use sampling; use greedy decoding otherwise, by default False | ||
temperature | ||
The value used to modulate the next token probabilities, by default 1.0 | ||
topK | ||
The number of highest probability vocabulary tokens to keep for | ||
top-k-filtering, by default 50 | ||
topP | ||
Top cumulative probability for vocabulary tokens, by default 1.0 | ||
If set to float < 1, only the most probable tokens with probabilities | ||
that add up to ``topP`` or higher are kept for generation. | ||
repetitionPenalty | ||
The parameter for repetition penalty, 1.0 means no penalty. , by default | ||
1.0 | ||
noRepeatNgramSize | ||
If set to int > 0, all ngrams of that size can only occur once, by | ||
default 0 | ||
ignoreTokenIds | ||
A list of token ids which are ignored in the decoder's output, by | ||
default [] | ||
Notes | ||
----- | ||
This is a very computationally expensive module especially on larger | ||
sequence. The use of an accelerator such as GPU is recommended. | ||
References | ||
---------- | ||
- `StarCoder2: The Versatile Code Companion. | ||
<https://huggingface.co/blog/starcoder>`__ | ||
- https://github.com/bigcode-project/starcoder | ||
**Paper Abstract:** | ||
*The BigCode project, an open-scientific collaboration focused on the responsible | ||
development of Large Language Models for Code (Code LLMs), introduces StarCoder2. In | ||
partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons | ||
of their source code archive. Alongside the SWH repositories spanning 619 programming | ||
languages, we carefully select other high-quality data sources, such as GitHub pull requests, | ||
Kaggle notebooks, and code documentation. This results in a training set that is 4× larger | ||
than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters | ||
on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM | ||
benchmarks.* | ||
*We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on | ||
most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2-15B, | ||
significantly outperforms other models of comparable size. In addition, it matches or | ||
outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder-33B is | ||
the best-performing model at code completion for high-resource languages, we find that | ||
StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several | ||
low-resource languages. We make the model weights available under an OpenRAIL license and | ||
ensure full transparency regarding the training data by releasing the Software Heritage | ||
persistent Identifiers (SWHIDs) of the source code data.* | ||
Examples | ||
-------- | ||
>>> import sparknlp | ||
>>> from sparknlp.base import * | ||
>>> from sparknlp.annotator import * | ||
>>> from pyspark.ml import Pipeline | ||
>>> documentAssembler = DocumentAssembler() \\ | ||
... .setInputCol("text") \\ | ||
... .setOutputCol("documents") | ||
>>> starcoder2 = StarCoder2Transformer.pretrained("starcoder2") \\ | ||
... .setInputCols(["documents"]) \\ | ||
... .setMaxOutputLength(50) \\ | ||
... .setOutputCol("generation") | ||
>>> pipeline = Pipeline().setStages([documentAssembler, starcoder2]) | ||
>>> data = spark.createDataFrame([["def add(a, b):"]]).toDF("text") | ||
>>> result = pipeline.fit(data).transform(data) | ||
>>> result.select("generation.result").show(truncate=False) | ||
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | ||
|result | | ||
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | ||
|[def add(a, b): return a + b] | | ||
+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | ||
""" | ||
|
||
|
||
|
||
name = "StarCoderTransformer" | ||
|
||
inputAnnotatorTypes = [AnnotatorType.DOCUMENT] | ||
|
||
outputAnnotatorType = AnnotatorType.DOCUMENT | ||
|
||
configProtoBytes = Param(Params._dummy(), "configProtoBytes", | ||
"ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()", | ||
TypeConverters.toListInt) | ||
|
||
minOutputLength = Param(Params._dummy(), "minOutputLength", "Minimum length of the sequence to be generated", | ||
typeConverter=TypeConverters.toInt) | ||
|
||
maxOutputLength = Param(Params._dummy(), "maxOutputLength", "Maximum length of output text", | ||
typeConverter=TypeConverters.toInt) | ||
|
||
doSample = Param(Params._dummy(), "doSample", "Whether or not to use sampling; use greedy decoding otherwise", | ||
typeConverter=TypeConverters.toBoolean) | ||
|
||
temperature = Param(Params._dummy(), "temperature", "The value used to module the next token probabilities", | ||
typeConverter=TypeConverters.toFloat) | ||
|
||
topK = Param(Params._dummy(), "topK", | ||
"The number of highest probability vocabulary tokens to keep for top-k-filtering", | ||
typeConverter=TypeConverters.toInt) | ||
|
||
topP = Param(Params._dummy(), "topP", | ||
"If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation", | ||
typeConverter=TypeConverters.toFloat) | ||
|
||
repetitionPenalty = Param(Params._dummy(), "repetitionPenalty", | ||
"The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details", | ||
typeConverter=TypeConverters.toFloat) | ||
|
||
noRepeatNgramSize = Param(Params._dummy(), "noRepeatNgramSize", | ||
"If set to int > 0, all ngrams of that size can only occur once", | ||
typeConverter=TypeConverters.toInt) | ||
|
||
ignoreTokenIds = Param(Params._dummy(), "ignoreTokenIds", | ||
"A list of token ids which are ignored in the decoder's output", | ||
typeConverter=TypeConverters.toListInt) | ||
|
||
def setIgnoreTokenIds(self, value): | ||
"""A list of token ids which are ignored in the decoder's output. | ||
Parameters | ||
---------- | ||
value : List[int] | ||
The words to be filtered out | ||
""" | ||
return self._set(ignoreTokenIds=value) | ||
|
||
def setConfigProtoBytes(self, b): | ||
"""Sets configProto from tensorflow, serialized into byte array. | ||
Parameters | ||
---------- | ||
b : List[int] | ||
ConfigProto from tensorflow, serialized into byte array | ||
""" | ||
return self._set(configProtoBytes=b) | ||
|
||
def setMinOutputLength(self, value): | ||
"""Sets minimum length of the sequence to be generated. | ||
Parameters | ||
---------- | ||
value : int | ||
Minimum length of the sequence to be generated | ||
""" | ||
return self._set(minOutputLength=value) | ||
|
||
def setMaxOutputLength(self, value): | ||
"""Sets maximum length of output text. | ||
Parameters | ||
---------- | ||
value : int | ||
Maximum length of output text | ||
""" | ||
return self._set(maxOutputLength=value) | ||
|
||
def setDoSample(self, value): | ||
"""Sets whether or not to use sampling, use greedy decoding otherwise. | ||
Parameters | ||
---------- | ||
value : bool | ||
Whether or not to use sampling; use greedy decoding otherwise | ||
""" | ||
return self._set(doSample=value) | ||
|
||
def setTemperature(self, value): | ||
"""Sets the value used to module the next token probabilities. | ||
Parameters | ||
---------- | ||
value : float | ||
The value used to module the next token probabilities | ||
""" | ||
return self._set(temperature=value) | ||
|
||
def setTopK(self, value): | ||
"""Sets the number of highest probability vocabulary tokens to keep for | ||
top-k-filtering. | ||
Parameters | ||
---------- | ||
value : int | ||
Number of highest probability vocabulary tokens to keep | ||
""" | ||
return self._set(topK=value) | ||
|
||
def setTopP(self, value): | ||
"""Sets the top cumulative probability for vocabulary tokens. | ||
If set to float < 1, only the most probable tokens with probabilities | ||
that add up to ``topP`` or higher are kept for generation. | ||
Parameters | ||
---------- | ||
value : float | ||
Cumulative probability for vocabulary tokens | ||
""" | ||
return self._set(topP=value) | ||
|
||
def setRepetitionPenalty(self, value): | ||
"""Sets the parameter for repetition penalty. 1.0 means no penalty. | ||
Parameters | ||
---------- | ||
value : float | ||
The repetition penalty | ||
References | ||
---------- | ||
See `Ctrl: A Conditional Transformer Language Model For Controllable | ||
Generation <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details. | ||
""" | ||
return self._set(repetitionPenalty=value) | ||
|
||
def setNoRepeatNgramSize(self, value): | ||
"""Sets size of n-grams that can only occur once. | ||
If set to int > 0, all ngrams of that size can only occur once. | ||
Parameters | ||
---------- | ||
value : int | ||
N-gram size can only occur once | ||
""" | ||
return self._set(noRepeatNgramSize=value) | ||
|
||
@keyword_only | ||
def __init__(self, classname="com.johnsnowlabs.nlp.annotators.seq2seq.StarCoderTransformer", java_model=None): | ||
super(StarCoderTransformer, self).__init__(classname=classname, java_model=java_model) | ||
self._setDefault(minOutputLength=0, maxOutputLength=20, doSample=False, temperature=0.6, topK=50, topP=0.9, | ||
repetitionPenalty=1.0, noRepeatNgramSize=0, ignoreTokenIds=[], batchSize=1) | ||
|
||
@staticmethod | ||
def loadSavedModel(folder, spark_session, use_openvino=False): | ||
"""Loads a locally saved model. | ||
Parameters | ||
---------- | ||
folder : str | ||
Folder of the saved model | ||
spark_session : pyspark.sql.SparkSession | ||
The current SparkSession | ||
Returns | ||
------- | ||
StarCoderTransformer | ||
The restored model | ||
""" | ||
from sparknlp.internal import _StarCoderLoader | ||
jModel = _StarCoderLoader(folder, spark_session._jsparkSession, use_openvino)._java_obj | ||
return StarCoderTransformer(java_model=jModel) | ||
|
||
@staticmethod | ||
def pretrained(name="starcoder", lang="en", remote_loc=None): | ||
"""Downloads and loads a pretrained model. | ||
Parameters | ||
---------- | ||
name : str, optional | ||
Name of the pretrained model, by default "starcoder" | ||
lang : str, optional | ||
Language of the pretrained model, by default "en" | ||
remote_loc : str, optional | ||
Optional remote address of the resource, by default None. Will use | ||
Spark NLPs repositories otherwise. | ||
Returns | ||
------- | ||
StarCoderTransformer | ||
The restored model | ||
""" | ||
from sparknlp.pretrained import ResourceDownloader | ||
return ResourceDownloader.downloadModel(StarCoderTransformer, name, lang, remote_loc) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.