Skip to content

Natural Language Processing (NLP) using the FLEXible framework.

License

Notifications You must be signed in to change notification settings

FLEXible-FL/flex-nlp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

flex-nlp

The flex-nlp package consists of a set of tools and utilities to work with Natural Language Processing (NLP) datasets and models. It is designed to be used with the FLEXible framework, as it is an extension of it.

flex-nlp comes with some tools to work with NLP datasets, that are the following ones:

  • ss_triplet_input_adapter a Semantic Textual Similarity (STS) dataset adapter: It is a dataset adapter that allows to work with the TripletQQP dataset and other datasets that are similar to it.
  • default_data_collator_classification: It is a data collator that allows to work with the classification task, and it is the default data collator for the classification task.
  • basic_collate_pad_sequence_classification: It is a data collator that allows to work with the classification task, and it is a basic data collator for the classification task. This collator pads the sequences to the maximum length of the batch, and it puts the batch dimension in the first position.

We also provide an aggregator to work with neural networks, clip_avg. Alonside, we have used some aggregator available in the FLEXible framework.

Aggregator Description Citation
clip_avg It is a federated aggregator that clips the weights recieved by the clients, averaging only those that surpass a selected threshold. Reviewing Federated Learning Aggregation Algorithms; Strategies, Contributions, Limitations and Future Perspectives
fedavg It is a federated aggregator that compute the mean of the weights recieved by the clients. Communication-Efficient Learning of Deep Networks from Decentralized Data
weighted_avg Similar to fedavg, it is a federated aggregator that add weights to the clients in order of giving more importance to some clients than to another clients. Communication-Efficient Learning of Deep Networks from Decentralized Data

 Tutorials

To get started with flex-nlp, you can check the notebooks available in the repository. They cover the following topics:

In the following we detail the tasks, models, and the datasets used in the notebooks:

Task Model Dataset
Sentiment Analysis (SA) BiGRU IMDb
Question Answering (QA) DistilBERT SQuAD
Semantic Textual Similarity (STS) DistilRoberta QQP-Triplets

Installation

We recommend Anaconda/Miniconda as the package manager. The following is the corresponding flex-nlp versions and supported Python versions.

flex flex-nlp Python
main / nightly main / nightly >=3.8, <=3.11
v0.6.0 v0.1.0 >=3.8, <=3.11

To install the package, you can use the following commands:

Using pip:

pip install flexnlp

Download the repository and install it locally:

git clone [email protected]:FLEXible-FL/flex-nlp.git
cd flex-nlp
pip install -e .

## Citation

If you use this package, please cite the following paper:

TODO: Add citation